
Industry Linkages from Joint Production

Xiang Ding∗

Harvard University

May 21, 2020
Click Here for the Latest Version

Abstract

Does joint production within firms link up aggregate outcomes across industries?
I exploit exogenous variation in foreign demand faced by USmulti-industry manufac-
turers to identify this transmission mechanism. I find that a positive demand shock in
one industry of a firm increases its sales in another the more that both industries share
knowledge inputs—including R&D, IT, and other professional services. I develop a gen-
eral equilibrium model of joint production and estimate that properties of knowledge
inputs generate economies of scale and scopewithin the firm. An expansion of market
size in one industry lowers prices in not only the same industry but also others. These
cross-industry spillovers account for 20 percent of the aggregate response of prices to
market size and manifest disproportionately among knowledge-intensive industries.
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Introduction

Multi-industry firms account for three-quarters of US manufacturing output. Do these
firms operate independent industry-level production functions, or is output jointly de-
termined across industries? Despite decades of intellectual history on joint production
(Shephard, 1953; Baumol et al., 1982; Milgrom and Roberts, 1990), systematic firm-level
evidence remains scarce. Workhorse models of multi-output firms (Klette and Kortum,
2004; Bernard et al., 2010; Mayer et al., 2014) assume instead that a firm’s marginal cost
in one industry is unaffected by its output in any other industry. In the absence of joint
production, these models preclude within-firm cost complementarities from linking up
aggregate outcomes across industries.

In this paper I provide firm-level evidence on joint production and a theoretical frame-
work to quantify the new industry linkages that emerge. I find that a firm’s sales in one
industry responds to demand shocks in its other industries. To account for these intra-firm
spillovers, I develop and estimate a tractable model of joint production featuring variable
own and cross-industry price elasticities of supply. Under the estimated elasticities, joint
production generates aggregate economies of scope—producer prices in one industry fall in
response to expansions of market size in another industry. I calculate that economies of
scope in US manufacturing account for 20 percent of the aggregate response of producer
prices to market size and vary substantially across industries. I lay out these contributions
over four sections of the paper.

Section 1 begins with an empirical test of production independence. I assemble panel
data from the US Economic Census on the sales and exports, by industry, of all US manu-
facturing firms. I estimate the impact of plausibly exogenous demand shocks (originating
from foreign buyers) in one industry of a firm on its sales in another industry. If pro-
duction were independent, demand shocks would increase output in the directly affected
industry but not other industries of the firm.

Instead, cross-industry spillovers are heterogeneous and depend on the types of inputs
used in production. I measure industry-level expenditure shares across the universe of
input categories in the BEA’s input-output (I/O) and capital flow tables. I focus on a large
but often-overlooked category of knowledge-generating inputs—comprised of professional
services, information, and the leasing of intangible assets—that contribute to the firm’s
knowledge, or intangible, capital.1 Despite the fact that 9 percent of gross manufacturing
output is spent on this category of knowledge inputs, little is known about their role in

1The data covers both capitalized and current expenses over inputs such as R&D, engineering, manage-
ment, IT and software. See Table 7 for a full list. McGrattan (2017) uses a similar classification in the BEA
tables to estimate a multi-sector RBC model with intangible capital.
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the production process.
I find that a demand shock in one industry of a firm increases its sales in another the

more that the two industries share knowledge inputs. In contrast, spillovers are uncorre-
lated with the degree to which industries share other types of inputs. Relative to a broad
literature documenting intra-firm spillovers (e.g. across plants in Giroud and Mueller,
2019), I provide the first evidence that transmission is heterogenous by industry and re-
lated to properties of knowledge inputs in production.2 These findings are consistent with
recent evidence that intangible capital might be scalable (Haskel and Westlake, 2017) and
transferrable across the plants of a firm (Atalay et al., 2014).

Section 2 rationalizes intra-firm spillovers using a quantitative model of joint produc-
tion. I develop a two-stage production framework where firms compete across multiple
industries under monopolistic competition. In the first stage, the firm invests in a range
of capital inputs to accumulate capital (both tangible and intangible) across industries. In
the second stage, conditional on its accumulated levels of capital, the firm uses a range of
production inputs to generate final output in each industry. Whereas the second stage is
straightforward and separable across industries, the first stage is plausibly interdependent
across industries.

I model capital accumulation as a stochastic process that reflects uncertainty behind
the value of capital inputs, be it R&D, advertising, or land development. Each type
of input contributes to an arrival process of new capital within the firm, and the firm
allocates each new piece of capital to a chosen industry. This mapping from capital inputs
to accumulated capital depends on two properties: scalability and mutability. Scalability
measures the responsiveness of the capital arrival rate to increased input spending, and
mutability determines the allocation of new capital across industries.

Mutability is a new concept relevant under joint production. Each new piece of
capital arriveswith a stochasticmatch-specific value in each potential industry. Mutability
measures the variance in these match-specific values of capital conditional on arrival. A
firm benefits from input mutability because it is able to choose the best industry outlet
amongmultiple ex-post realizations ofmatch-specific capital values. Moremutable inputs
are thus worth more in expectation, and more likely to contribute to capital accumulation
across different industries.

Consider, for example, the R&D process within General Electric. An increase in de-
mand in the aerospace industry would cause GE to scale up spending onmaterials science

2Other dimensions through which intra-firm spillovers occur include firm segments due to internal
capitalmarkets (Lamont, 1997), national boundaries due to knowledge transferwithinmultinationals (Keller
and Yeaple, 2009; Desai et al., 2009; Bilir and Morales, 2019; Boehm et al., 2019a), market destinations due to
convex production costs (Almunia et al., 2018), and distance (Giroud, 2013; Gumpert et al., 2019).
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(a type of capital input), ostensibly to improve the hot gas path of its aviation turbines.
However, the more mutable is scientific research, the more likely are the additional sci-
entists to create inventions more valuable when deployed in GE’s MRI machines (e.g.
high-sensitivity scanning). The initial aerospace demand shock would thus increase GE’s
health equipment sales the more scalable and mutable is the production of scientific
knowledge capital. These insights extend beyond R&D to all types of capital inputs, each
of which can have varying degrees of scalability and mutability.3

Themore that a pair of industries share scalable andmutable capital inputs, the greater
are a firm’s (quality-adjusted) production cost savings in one industry from an expansion
of market size in another. Because different industries benefit from different types of capi-
tal, cross and own-industry price-elasticities of supply within the firm are heterogeneous.
My quantitative framework links up an older literature on firm diversification and the
production of knowledge (Penrose, 1959; Gort, 1962; Rubin, 1973; Griliches, 1979) with a
newer one emphasizing firm heterogeneity in macro (Melitz, 2003). Whereas the former
finds evidence of positive intra-firm R&D spillovers (Jovanovic, 1993; Klette, 1996), the
latter focuses on non-supply-related mechanisms that range from demand cannibaliza-
tion (Eckel and Neary, 2009; Dhingra, 2013), span-of-control (Nocke and Yeaple, 2014),
to carry-along trade (Bernard et al., 2018). These models are typically solved within an
industry equilibrium and feature symmetrically negative cross-product spillovers.4

In Section 3, I estimate the scalability and mutability of capital inputs in production
across over 200 manufacturing industries. I leverage the intra-firm response of sales
to demand shifters across industries—an identification insight often overlooked in the
existing literature on joint production (Färe and Primont, 1995).5 In response to demand
shocks, a firm’s change in total sales over all industries identifies input scalability, whereas
its change in relative sales across industries identifies input mutability. Intuitively, just
as relative input cost shifters identify substitutability across inputs in the production of a
given output, in my setting relative output profitability shifters (demand shocks) identify
mutability across outputs in the use of a given input.

3Existing papers, on the other hand, study the effects of specific knowledge inputs in isolation—ranging
from R&D (Aw et al., 2011), marketing (Arkolakis, 2010), management (Bloom et al., 2019), to ICT (Fort,
2016; Lashkari et al., 2019)—and focus on the scalability of these inputs in single-industry production rather
than their mutability across industries.

4A contemporaneous paper by Boehm et al. (2019b) also emphasizes heterogeneity across industries but
focuses on the role of physical intermediate inputs for linking up a firm’s entry decisions across industries.

5Most papers estimate joint production by appealing to cost duality concepts (Baumol et al., 1982) for
just a few products at a time (e.g. agricultural cooperatives in Pokharel and Featherstone, 2019). Grieco
and McDevitt (2016) and Dhyne et al. (2017) assume a Cobb-Douglas production possibility frontier, which
presupposes diseconomies of scope. De Loecker et al. (2016) and Orr (2019) estimate productivity in
multi-product firms by a priori assuming that production is independent across industries.
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I conduct inference using simulated method of moments. I estimate production pa-
rameters in the model that rationalize the samewithin-firm, cross-industry covariances of
sales growth and demand shocks in the data. Consistent with the reduced-form evidence,
I allow knowledge inputs to have different scale and mutability parameters from residual
capital inputs. BEA data on input expenditures by industry provide variation needed to
differentiate properties of knowledge inputs from residual capital inputs. For example,
a more positive response of MRI machine sales to aviation demand shocks suggests that
the inputs more intensively used in the two industries (e.g. scientists) are more scalable
and mutable compared to other capital inputs.

I estimate that knowledge inputs are relativelymore scalable andmutable compared to
other capital inputs. These properties lead to heterogeneous cross-industry price elastici-
ties of supply within the firm. Elasticities are more negative among knowledge-intensive
industries like aerospace and electromedical apparatus manufacturing, consistent with
the reduced-form evidence. Despite its parsimony, the estimated model replicates non-
targeted cross-sectional moments such as the firm scope distribution and joint production
patterns across the entire US manufacturing sector.

Lastly, Section 4 quantifies the extent to which joint productionwithin the firmmatters
in the aggregate. I focus on aggregate supply elasticities—the response of the producer
price index in one industry tomarket size shifters in another industry. This cross-industry
impact would be zero under independent production but non-zero and ambiguous in
sign under joint production. I express this matrix of own- and cross-industry macro elas-
ticities in terms of scalability and mutability parameters. Given the estimates, aggregate
economies of scope—a fall in prices in one industry in response to an increase in market
size in another—are stronger whenever the two industries share more knowledge inputs.

I find quantitatively large economies of scope in the US manufacturing sector. I
calibrate the model to US data in 2007 and estimate the impact of a proportional foreign
demand shock in eachUS industry. I decompose the aggregate response of producerprices
into changes that occur as a result of industry scale economies (own-industry elasticities)
versus scope economies (cross-industry elasticities). Scope economies contribute to an
aggregate elasticity of prices to market size of -0.04, more than 20% of the total response
of prices. Estimates of own-industry returns to scale—the remaining 80%—are consistent
with recent estimates using industry-level data by Kucheryavyy et al. (2019) and Bartelme
et al. (2019). These papers, however, a priori assume zero cross-price elasticities of supply
and would miss 20 percent of the overall price response.

These aggregate numbers mask significant heterogeneity across industries. Industries
that use more knowledge inputs are stronger transmitters and beneficiaries of economies
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of scope. For example, when demand increases in the electromedical apparatus industry,
60% of the total decline in the manufacturing sector price index manifests in other indus-
tries. As firms respond by scaling up knowledge inputs, the mutability of knowledge
generates capital improvements (price declines) in the other industries of these firms that
benefit most from similar types of knowledge. But in the flavoring syrup industry, which
relies predominantly on other forms of (less scalable and less mutable) capital, an increase
in demand actually leads prices in other industries to rise due to firms reallocating scarce
capital towards flavoring syrup.

As a proof of concept, I show that joint production changes the consumer price im-
pact of US trade policy relative to existing quantitative models surveyed in Costinot and
Rodríguez-Clare (2014). I analyze the impact on the US economy of a 20% unilateral tariff
on all imports from China. Import protection raises the prices of foreign goods but also
lowers prices of domestic goods through scale and scope economies induced by improved
market access for domestic firms. The US manufacturing CPI rises by 0.8% in my model
compared to 1.12% absent the response of domestic producer prices (i.e. if marginal costs
were constant). I also show that knowledge of cross-price elasticities of supply can be
used to improve policy. I identify alternative tariff schedules that achieve the same re-
duction in US imports from China (41%) but more than halve the adverse CPI impact
(to 0.38%) by biasing protection towards knowledge-intensive industries with stronger
internal economies of scale and scope.

These results contribute to a prevailing literature in macro and trade where industry
linkages are driven by interactions across rather than within firms. I provide the requisite
microeconomic evidence to distinguish internal joint production fromexternal effects such
as agglomeration externalities (Ellison et al., 2010) and innovation spillovers (Bloom et al.,
2013). My focus on supply elasticities (how demand shocks move prices along a supply
curve) is distinct from the literature on production networks (how productivity shocks
shift the supply curve, in Gabaix, 2011; Acemoglu et al., 2012, 2016; di Giovanni et al.,
2018; Baqaee and Farhi, 2019; Liu, 2019; Lim, 2018). Nevertheless, these two mechanisms
interact to compound the aggregate returns to scale and scope. I find that embedding
joint production within an external input-output production structure à la Caliendo and
Parro (2014) more than doubles the cross-industry price impact of demand shocks.

1 Data and Empirical Evidence

This section introduces two main data sources: (i) panel data on the sales and exports,
by industry, of all US manufacturing firms, and (ii) industry-level variation on input
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expenditures. I use this data to provide evidence that production is interdependent
across industries within a firm. My identification strategy exploits plausibly exogenous
changes to foreign market size as shifters of demand specific to an industry within a firm.
I find that a demand shock in one industry of a firm increases its sales in another industry
the more that both industries share knowledge-generating inputs.

1.1 Joint Production in US Manufacturing Firms

I construct a firm-industry-level panel dataset containing the universe of US manufac-
turing firms from 1997 to 2012. I make use of product trailer files in the quinquennial
Census of Manufactures, which contain sales across detailed product lines within each
establishment of a firm. I aggregate these detailed products to a set J of 206 industries, a
level at which I assume production technologies (use of inputs) might differ.6 I define the
sales of a firm f in industry j in year t, X f jt , as the sum of all external shipments of j over
all of the firm’s establishments.7 I construct data on these firms’ exports by merging in
customs data from the Longitudinal Foreign Trade Transaction Database (LFTTD) at the
same level of industry clarity.

Table 1 summarizes the prevalence of multi-industry firms in US manufacturing, sug-
gesting that joint production within these firms may have first-order effects on aggregate
inter-industry relationships.8 One-fifth of all US manufacturers operate in two or more
industries, accounting for around three-quarters ofmanufacturing sales, exports, imports,
and employment.9 The second and third rows of the table show that sales within these
firms are not too skewed towards their primary (highest grossing) industry. The primary
industry of each firm accounts for only roughly two-thirds of the firm’s total sales. The
remaining industries (just a single one for the median multi-industry firm) are classified
under ‘secondary’ and account for one quarter of total gross output.

The median multi-industry firm is active in only two industries. Interestingly, these
two industries also fall wide enough to be two different sectors (defined as 3-digit NAICS

6This is roughly consistent with 5-digit NAICS codes. It is the most disaggregated level at which
input-output flows (across industries) are available in BEA data over time. More details on the match and
construction of this concordance can be found in the Data Appendix.

7I define external manufacturing sales as the total shipments less inter-plant shipments (from one plant
to another plant within the same firm). This classification in the data ignores the plant-dimension and the
paper does not distinguish plant-level from firm-level economies.

8Bernard et al. (2010) provide a more detailed overview using the same data up to 1997. See Data
Appendix A.2 for statistics on the non-manufacturing sector.

9A classic explanation for the firm boundary is that firms integrate vertically related industries to avoid
holdup and contracting inefficiencies. Consistent with Atalay et al. (2014), I find that within-firm shipments
of goods are a small fraction of firms’ overall sales and thus appear inadequate for explaining firm scope.

6



Table 1: Statistics on US Multi-Industry Manufacturing Firms

1997 2002 2007 2012
Share of aggregate outcome

Manufacturing sales .75 .75 .75 .76
by primary industry .46 .49 .51 .52
by secondary industries .29 .26 .24 .24

External manufacturing sales, X f j .74 .74 .74 .75

Manufacturing employment .62 .63 .60 .60
Exports .84 .80 .81 .76
Imports .82 .79 .79 .77

Number of firms .19 .20 .20 .20

Mean and median scope
Mean number of industries 2.69 2.73 2.63 2.65
Median number of industries 2 2 2 2

Mean number of sectors 1.69 1.74 1.69 1.70
Median number of sectors 2 2 2 2

Notes: Multi-industry firms are firms producing manufacturing products that fall in at least two distinct
industry classifications. An industry is defined at a hand-constructed, roughly 5-digit NAICS level, of which
there are 206 across themanufacturing sector. A sector refers to a 3-digit NAICS code, of which there are 21 in
manufacturing. External manuf. sales is equal to the firm’s gross manufacturing sales less its total inter-plant
shipments reported.
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codes), consistent with the view that production within a firm spans sufficiently distinct
production processes. This broad classification of what is an industry sets my empirical
investigation apart from other papers that study the product-variety margin of the multi-
product firm (Feenstra and Ma, 2007; Arkolakis et al., 2019; Macedoni and Xu, 2019).

1.2 Knowledge Inputs in Production

I focus on a category of inputs—knowledge-generating inputs—that constitute 15 percent
of US GDP but whose role in the production process is less well understood than physical
intermediate inputs. I classify knowledge inputs as the following NAICS industry cate-
gories (root code in parentheses): professional and technical services (54), management
of companies and enterprises (55), the leasing of intangible assets (533), and information
(51). These inputs are chosen to reflect their potential contribution towards knowledge
capital (or intangible capital) within the firm.10

Figure 1 plots expenditures on knowledge inputs as a share of gross output across US
manufacturing industries in 1997 (ranked in ascending order on the x-axis). I use the
input-output tables and capital flow tables from the Bureau of Economic Analysis to infer
input-by-industry expenditure shares. I define expenditure shares of industry j on any
input m as:

β jm ≡
E jm + I jm∑
m E jm + I jm

,

whereE jm are the expenses of industry j on input m and I jm are the capitalized investments
on input m made by industry j to form new capital.11

On average, expenditures by US manufacturing firms on knowledge inputs amount
to over 9% of gross output (given by the dashed line). There is substantial variation
across industries: the 25th-percentile industry spends 6.4% of gross output on knowledge,
while the 75th-percentile industry spends nearly double that—11.5% of gross output—on
knowledge. These expenditures are substantial given that labor inputs account for on
average only 19% of gross output.

10See the Data Appendix Section A.1 and accompanying Table 7 for more detail on the exact input
industries. Examples of knowledge inputs include data processing services, scientific R&D, engineering,
consulting, architectural, advertising, and legal services.

11I account for both capitalized and expensed inputs from the knowledge sector. But because the capital
flow table ceases to exist (at least publicly) after 1997 and national accounting rules on the capitalization
of intangibles change over time, I am unable to analyze how expenditures change over time. I hold the
shares fixed at their 1997 values through the empirical analysis in this section. Expensed expenditures on
knowledge in 1997 account for the vast majority of spending, so results are robust to using just expenditure
flows from the I/O use table.
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Figure 1: Expenditures on Knowledge-generating Inputs in US Manufacturing, 1997

Notes: This figure shows the share of expenditures on knowledge inputs, by manufacturing industry, in in-
creasing order of expenditure share. The x-axis tracks the cumulative share of gross output inmanufacturing
by the industry and all preceding industries in rank.

1.3 Reduced-form Evidence of Production Interdependence

I use the firm panel dataset and industry-level expenditure shares to test whether pro-
duction is independent across the industries of a firm. Under the null hypothesis, a
profit maximizing multi-industry firm operates independent production processes across
industries with separate input and output markets. An increase in demand in a given
industry of the firm would increase sales in that same industry but have no effect at all on
sales in any of the firm’s other industries. On the other hand, if production were jointly
determined across industries, an increase in production in one industry of the firmmight
generate spillovers in other industries.

I carry out this test using the following empirical specification. I examinewhether sales
growth in a given industry j of a firm (∆ log X f jt) is affected by a demand shock in any of
the firm’s other industries (∆ log SOTHER

f jt ), conditional on the impact of any own-industry
demand shocks (∆ log S f jt):

∆ log X f jt � ψ
OWN ∆ log S f jt + ψSPILL ∆ log SOTHER

f jt +

Controls f j,t−1 + FE jt + ε f jt , ∀ f , j, t � {2, 3}, (1)
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where t � 1, 2, 3 refer to the years 1997, 2002, and 2007, and ∆ is a first-difference operator
between t and t − 1 (a five-year difference in the data).12 Industry-year fixed effects
sweep away any supply and demand shocks common to all firms in an industry, while
Controls f j,t−1 account for non-parallel growth trends that depend on initial firm-industry
characteristics (such as size or export intensity).

Under the null hypothesis, the coefficient ψSPILL would be equal to zero whenever
∆ log SOTHER

f jt references a firm’s demand shock in any other industry k , j. In principle,
this is a test that eachof the J(J−1) � 42230bilateral cross-elasticitiesψSPILL

jk is zero. I donot
have statistical power to separately test each cross-elasticity given my limited sample size.
Instead, I test twonecessary conditions for the null to hold: (i)whether cross-elasticities are
zero on average, and (ii) whether cross-industry shocks among certain types of industries
(e.g. those that share more knowledge inputs) have a differential impact from the average.

Demand Shocks

I use the five-year change in imports (excluding from the US) in a foreignmarket (denoted
∆ log IMP∼US

nht , for a product h in a country n) as a proxy for a shift in market size faced by
a US exporter selling in that market. I construct demand shocks, ∆ log S f jt , by interacting
these shifts in market size with pre-existing variation in a firm’s export shares across
markets within an industry:

∆ log S f jt � s∗f j,t−1

∑
n

∑
h∈H j

s f nh | f j,t−1∆ log IMP∼US
nht , (2)

where s∗f j,t−1 is the firm’s export intensity in industry j in year t − 1 and s f nh | f j,t−1 is the
share of the firm’s exports in industry j that go to destination n and HS6 product h.13

I use annual customs data on firm exports by destination and product to construct
the export intensity and share variables, and the BACI Comtrade dataset on annual
global trade flows between countries at the HS6 level to construct the import growth

12I drop the time period 2007-2012 in all but summary statistics because (i) the financial crisis generated
correlated shocks across countries, industries, as well as firms, jeopardizing variation in the instrument, and
(ii) the relevance of variation in input expenditure shares (which I hold fixed to 1997) is diminished.

13Existing papers use this shift-share identification strategy to construct demand shocks at the firm-level,
using data from countries such as Denmark (Hummels et al., 2014), France (Mayer et al., 2016), and Portugal
(Garin and Silverio, 2018). In my paper, the scale and scope of US exporters allows demand shocks to vary
across industries within the firm. Similar to Aghion et al. (2019), I match census and customs data sources
on firm exports to construct demand shocks. There are roughly 5000 HS6 product codes h, and only 206
industries j, with very few instances of a HS6 code h concording to more than one industry j. See Data
Appendix Section A.3 for how I deal with carry-along trade and product-industry concordance splits.
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variable.14 My empirical setting benefits from variation induced by the large number of
combinations—over 1million—ofmarkets (nh pairs). Differences in import growth across
these markets drive variation in the shift-share measure of a firm’s demand shock in a
given industry j. The scale and scope of US multi-industry exporters also contributes to
variation in the demand shock, even across firms within an industry. The median number
of product-destination export markets within an industry of a firm in my sample is 6.2,
and the mean is 24.1.

My identification assumption is that firm-industry specific demand shocks are condi-
tionally uncorrelatedwith (i) unobservable supply-side shocks (that shift the cost function)
and (ii) unobservable demand-side shocks (that shift product demand) in the firm’s other
industries. One threat to identification is that changes in the imports of foreign markets
(from non-US sources) could still reflect idiosyncratic supply-side shocks within a large-
enough US firm. For example, Indian imports of X-ray scanners from other countries
could fall if GE, a major exporter, became more productive at making them (and thus
exported more to India). To mitigate contamination from these unobserved supply-side
shocks, I construct the demand shock in equation (2) using only variation from the export
markets of a firm in which it has a market share below 10%.15

Other-Industry Demand Shocks and Knowledge Input Proximity

I construct two different types of weighted averages of a firm’s shocks in other industries.
First, I use a sales-weighted average that assumes demand shocks have spillover effects
proportional to their current size (gross sales) within the firm:

∆ log SOTHER,SYM
f jt ≡

∑
k, j

(
X f k ,t−1∑

k, j X f k ,t−1

)
∆ log S f kt .

However, the sales-weighted average pre-supposes a common sign for spillovers
across industries. In reality, some pairs of industries may be complements in produc-
tion while other pairs substitutes. I explore an alternative functional form that tests

14Changes in import growth ∆ log IMP∼US
nht could reflect both (i) changes in the level of demand in that

market, and (ii) changes in the degree of foreign or home producer competition in that market that affect
the price index. Both sources of variation are relevant shifters of a US firm’s residual demand, though they
would move residual demand in opposite directions. I find that empirically, the first force dominates.

15Empirically, my reduced-form results are robust to different threshold choices.
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whether spillovers are correlated with the intensity of use of knowledge inputsMKLG:

∆ log SOTHER,KLG
f jt ≡

∑
k, j

∑
m∈MKLG

f

β jm

(
βkmX f k ,t−1∑

k, j βkmX f k ,t−1

)
∆ log S f kt ,

where the sales-share weights in the SYM functional form are replaced with a product
of two terms. The first term, β jm , is the expenditure share of industry j on input m.
The second term (in parentheses) measures the importance of industry k in the firm’s
overall spending on input m relative to the firm’s other industries k′ , j. This multilateral
weighting scheme assumes that a demand shock in an industry k should matter more
than a shock in k′ for affecting sales in j whenever k spends more (compared to k′) on the
specific knowledge inputs m ∈ MKLG

f that are used intensively in j.

Reduced-Form Results

Table 2 presents estimates of spillover coefficients ψSPILL based on equation (1) using
the export demand shocks and various functional forms for ∆ log SOTHER

f jt . My sample
includes all firms that are multi-industry in each base year (t − 1) for which empirical
measures of demand shocks can be constructed in at least one industry. Observations
are continuing industries of these firms over each five-year period.16 Appendix Table 8
provides summary statistics on regression variables and other attributes of firms in the
sample. The final regression sample of roughly 5000 multi-industry continuing firms per
year accounts for over half of all US manufacturing gross output.

I test whether the coefficients ψSPILL,SYM and ψSPILL,KLG are zero, which are necessary
conditions for the null hypothesis of independent production across industries. I also
test whether within-firm spillovers across industries vary with the intensity of use of
knowledge inputs—if ψSPILL,KLG is different from ψSPILL,SYM .

First, column (1) reveals that the demand shocks are empirically relevant. A demand
shock in one industry of the firm increases the firm’s sales in that same industry relative
to other firms.17 The next two columns, (2) and (3), show that spillovers from demand

16For example, suppose firm f produces in industries A and B in 1997 but only produces in A in 2002. As
long as the firm received a demand shock in either industry A or B in 1997, I include the firm in the sample
(where it takes up a single observation, f �f, j �A). However, if in 2002 the firm switches to producing
industries C and D, there is no intensive margin overlap and this firm does not appear in my sample.

17Appendix Table 9 shows that this ‘first-stage,’ own-shock relevance is not driven by the export intensity
variable s∗f j,t−1 picking uppre-trends in growth rates (i.e. ifmore export-intensive industries of the firmgrow
faster). Estimates are robust to including as controls a full set of industry-year dummy variables interacted
with the export intensity variable. This is recommended by Borusyak et al. (2018) for specifications that
work with ‘incomplete’ shift-share research designs.
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Table 2: Cross-Industry Spillovers within the Firm

Sales growth, ∆ log X f jt (1) (2) (3) (4) (5) (6)
Own-industry shock 0.45*** 0.46*** 0.37*

∆ log S f jt (0.10) (0.09) (0.19)

Cross-industry shocks
(i) Knowledge-based spillovers 0.81 7.51*** 8.00*** 13.31***
∆ log SOTHER,KLG

f jt (1.01) (2.22) (2.25) (3.58)

(ii) Symmetric spillovers -0.03 -0.74*** -0.83*** -1.67***
∆ log SOTHER,SYM

f jt (0.11) (0.24) (0.24) (0.52)

Industry-year-FE X X X X X X
Firm-year-FE X
Observations 21,500 21,500 21,500 21,500 21,500 17,500
R2 0.06 0.06 0.06 0.06 0.06 0.39
Notes: This table displays responses of firm-industry sales to demand shocks across the firm’s range of
industries, in 5-year differences over the period 1997-2007. Standard errors are clustered at the firm level.
Number of observations are rounded for disclosure avoidance. Observations are at the firm-industry-year
level, for continuing observations of a sample of multi-industry firms with at least one industry directly
exporting. Results are unweighted but robust to weighting by the inverse within-firm share of sales of industry
j. Results are robust to deflating outcomes and also shocks.

shocks in other industries appear to be a wash when evaluated separately. The average
cross-elasticity, ψSPILL,SYM , is statistically insignificant from zero. This could occur for
one of two reasons: either (i) production is independent across industries, or (ii) some
pairs of industries are complements in production while others are substitutes, so that the
net effect comes out to zero.

The remaining columns, starting with column (4), indicate that spillovers are stronger
and more positive among industry pairs that share more knowledge inputs. Controlling
for this positive effect concentrated around knowledge-intensive industries, the remaining
average spillover is negative. These coefficients are consistently estimated and statistically
significant across a battery of controls in spite of substantial collinearity around the two
measures of cross-industry shocks.18

Column (5), the preferred specification, accounts jointly for own as well as cross-
industry demand shocks. Reassuringly, controlling for own-industry demand shocks does
nothing to change the magnitude or significance of cross-industry spillovers. Column (6)
shows that results remain robust to controlling for firm-year fixed effects, which soak up

18This collinearity—at 0.9—is consistent with regression columns (2) and (3) being independently in-
significant due to omitted variables bias.
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unobserved supply and demand shocks that jointly affect all industries of the firm.19
While the quantitative magnitudes of these reduced-form elasticities are best assessed

through the lens of an economic model (provided in Section 2), the following back-of-the-
envelope calculation reveals quantitatively large spillovers. Consider a firm that operates
an industry j that has a knowledge input proximity with the the firm’s other industries,
k , j, of 0.09, the mean value in the sample. If this firm receives a common demand shock
in all of its industries equal to one standard deviation in the sample (8.2%), the firm’s sales
in industry j would rise by 2.7%. This total impact comprises an own-industry response
(3.8%) and a net negative cross-industry response (-1.1%).

However, the net cross-industry spillover turns positive for industry pairs that share
more knowledge inputs. For another firm receiving the same shocks but whose industry
j is more proximate (by one standard deviation above the mean) in its use of knowledge
inputs with its other industries k , j, the cross-industry response rises to a positive 1%.
The total impact of demand shock on sales in industry j is now 4.8% (� 3.8% + 1%), with
cross-industry spillovers accounting for more than one-fifth of this total response.

Robustness to Controlling for Covariates

The estimates of spillovers in Table 2 are robust to controlling for an exhaustive set of
firm-industry level covariates. These covariates—including pre-period firm-industry size,
export intensity, export status, and firm-wide attributes—account for the possibility that
industry segments of firms might be on different growth trends. Moreover, I construct
other-industry averages of these covariates by interacting them with the same weights used
to average demand shocks in other industries of the firm. For any firm-industry level
covariate Y f k ,t−1, I construct:

ControlCROSS,KLG
f jt (Y) ≡

∑
k, j

∑
m∈MKLG

f

β jm

(
βkmX f k ,t−1∑

k, j βkmX f k ,t−1

)
Y f k ,t−1,

and likewise for ControlCROSS,SYM
f j (Y) using sales shares over k , j as weights. These

variables account for the possibility that sales growth in any industry j of the firm is
correlated with either pre-existing covariates (such as size) in other industries k , j or
input proximity weights.

In column (1) of Appendix Table 10, I saturate the baseline regression specification

19In undisclosed results, I also find that the specification is robust to including firm-industry fixed effects,
which further limits identifying variation to differences in growth rates and demand shocks between the
periods 1997-2002 and 2002-2007.
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with an exhaustive list of pre-period covariates: firm-wide log sales, export intensity,
firm-industry-level log sales, export intensity, export status, aswell as thefirm-industry co-
variates passed through the spillover functions ControlCROSS,KLG

f jt and ControlCROSS,SYM
f jt .

Reassuringly, controlling for these covariates affects neither the significance nor magni-
tude of the estimated spillover coefficients, ψCROSS,SYM and ψCROSS,KLG.

Spillovers from other types of Input Linkages

Are spillovers correlated with industries’ intensity of use of other categories of inputs,
besides knowledge? I extend the multilateral input proximity measure to pick up on
the sharing of other inputs among shocked and affected industries. I construct these
alternative other-industry demand shocks as

∆ log SOTHER,BLK
f jt ≡

∑
k, j

∑
m∈MBLK

f

β jm

(
βkmX f k ,t−1∑

k, j βkmX f k ,t−1

)
∆ log S f kt ,

which simply replaces the set of knowledge inputsMKLG
f used to construct∆ log SOTHER,KLG

f jt
with another subset of inputsMBLK

f .
I reproduce the specification in column (5) of Table 2 but replace ∆ log SOTHER,KLG

f jt

with ∆ log SOTHER,BLK
f jt , one BLK category at a time, across the universe of BEA input cate-

gories.20 Spillover coefficients, ψSPILL,BLK , are displayed in Figure 2 and the corresponding
regression table can be found in Appendix Table 11. The first three rows of Figure 2 break
down my classification of knowledge inputs into three sub-categories: headquarter ser-
vices, professional services and information, and leasing of intangibles. I find that each
sub-category is positive and statistically significant.

This comparison suggests that knowledge inputs have plausibly distinct characteristics
from other inputs. Spillovers are uncorrelated with the intensity of use of any other
category of inputs, with the exception of “transportation, wholesale, and retail” (where
positive spillovers are consistent with economies of scale in distribution). In particular,
the coefficients relating to input categories such as labor, agriculture, manufacturing,
and capital (computed as gross operating surplus) are all precisely estimated at zero,
suggesting industries that predominantly use these inputs have plausibly independent
production processes.21

20To enable a fair comparison, I include the same controls as the original column (5)—the own-industry
shock and the sales-weighted spillover function, ∆ log SCROSS,SYM

f jt .
21Lack of statistical power prevents joint estimates of spillover elasticities for each input block in the same

regression. Whenever three of more “other-shock” averages are included, collinearity renders all estimated
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Figure 2: Cross-Industry Spillovers by Category of Input

Notes: This figure displays estimates of spillover coefficients ψCROSS,BLK in alternative versions of regression
specification (5) of Table 2, where BLK references the input category across the rows of the Figure. Point
estimates are in green and 95% confidence intervals in orange. See Appendix Table 11 for the corresponding
regression table and for more details on the industry codes of these input categories.
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1.4 Interpretation and Discussion of Results

Spillovers are stronger andmore positive themore that industries share knowledge inputs.
While the average spillover coefficient, ψSPILL,SYM , can in principle be explained by non-
production-related mechanisms such as demand cannibalization or financial frictions,
I find that these spillovers are on average a wash. The coefficient ψSPILL,SYM is not
independently significant. In this subsection I discuss plausible mechanisms that explain
these findings as well as threats to identification.

Mechanism: Scalability of Shared Knowledge Inputs

The positive correlation of spillovers with knowledge input use is suggestive of a supply-
sidemechanism: when firms scale up knowledge inputs in response to a demand shock in
one industry, the inputs might also improve knowledge capital in other industries within
the firm.

I use firm-level input expenditure data to provide evidence on a necessary condition
behind this transmission mechanism. I show that firm-wide expenditures on a particular
category of observable knowledge inputs—purchased professional services—rise in re-
sponse to firm-wide demand shocks, consistent with the hypothesis that these inputs are
scalable.22 Table 3 estimates the elasticities of a set of firm-level outcome variables, Y f t , to
firm-level demand shocks:

∆ log Y f t � ν̃
∑

k

η f k ,t−1∆ log S f kt + ε f t , (3)

where η f k ,t−1 are weights that measure the relative propensity of demand shocks in
industry k to shift firm-wide outcomes, depending on the outcome variable.23

I find that purchased professional services (in column 1) rise in response to firm-wide
demand shocks, with an elasticity of 0.65.24 This elasticity reflects the joint effect of input
scalability and the responsiveness of marginal revenue to the empirically constructed

ψCROSS coefficients insignificant except ψCROSS,KLG, which always retains significance. See, for example,
specification (4) of Appendix Table 10, which controls jointly for sales, physical-input, and knowledge-input
weighted other-industry shocks.

22Such firm-level data is available for only a subset of firms. Purchased professional services comprise of
purchased software and data processing, management, and advertising that are outsourced by the firm and
represent a plausible subset of knowledge inputs in BEA tables.

23When the outcome variable is professional services, weights equal industry relative expenditures on
knowledge inputs (imputed from BEA I/O table coefficients). When the outcome variable is sales, weights
equal industry relative sales. See Data Appendix A.4.5 for the precise definitions.

24These results are consistent with papers that document a positive relationships between R&D and
market size (Aghion et al., 2019), and IT and market size (Lashkari et al., 2019) using French data.
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Table 3: Firm-level Margins of Response to Demand Shocks

(1) (2) (3) (4)
Purchased Prof. Services Capex Payroll Sales

Outcome-relevant demand shock 0.65*** 0.47 0.25** 0.37***∑
k η f k ,t−1∆ log S f kt (0.22) (0.37) (0.11) (0.15)

Year-FE X X X X
Observations 3,900 3,900 3,900 3,900
R2 0.02 0.04 0.01 0.05
Notes: This table displays responses of firm-level outcomes to demand shocks averaged across the firm’s industries,
in 5-year differences over the period 1997-2007. Standard errors are clustered at the firm level. Number of
observations are rounded for disclosure avoidance. Observations are at the firm-year level, for continuing firms
with at least one industry directly exporting and reporting non-zero purchased professional services.

demand shifter. I revisit and leverage this reduced-form coefficient when structurally
estimating the model in Section 3.25 In comparison, capital expenditures and payroll
(columns 2 and 3) all respondwith a lower elasticity than purchased professional services,
consistent with the hypothesis that knowledge-generating inputs are more scalable than
these other inputs. Finally, column (4) estimates the firm-level elasticity of sales to demand
shocks at 0.37, a value in between the elasticity of various input expenditures in the prior
columns. This provides reassurance that not all of the observed response of firm sales is
due to an adjustment in markups.

Unfortunately, there is no information on how the input expenditures of a firm (e.g.
data processing services) are apportioned across industries.26 The potential for any given
input to jointly contribute to output across multiple industries is not separately testable; it
is implicit in the reduced-form evidence. The model that I subsequently develop inherits
this general mapping from inputs to outputs. Estimation does not rely on firm specific
observations of expenditure use by industry. Variation in input-by-industry expenditure
data contained in aggregate BEA tables is sufficient, and even advantageous. Since prox-
imity weights, β jm , are constructed using industry-level data, the reduced-form estimates
are less likely to be correlated with firm-specific unobservables (such as differences in
productivity or access to certain inputs), a potential source of endogeneity bias.

25This consistency with theory is the primary motivation for using relative input-expenditures η f k ,t−1
instead of relative industry sales as weights. However, results are robust to using relative industry sales as
weights across all four outcome variables in Table 3.

26Even if such attribution existed, a firm could very well book the initial use of inputs in one industry
while reaping benefits in other industries. This data problem is also prevalent in other papers that estimate
multi-output production functions (De Loecker et al., 2016; Orr, 2019). The solution taken in these papers
is to assume separable production functions so that input use can be apportioned.
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Other Interpretations and Threats to Identification

For the spillovers in Table 2 to be interpreted as evidence of joint production, demand
shocks in the firm’s other industries k , j would have to be conditionally uncorrelated
with unobserved shifters of sales in a given industry j of the firm.27 Unobserved shifters
of sales could take the form of either demand and supply shocks and induce omitted
variables bias.

My empirical strategy is resilient to omitted variables bias due to both demand and
supply unobservables. First, the lack of significance when either of the cross-industry
shock variables are evaluated separately (in columns (2)-(3) of Table 2) rule out a simple
correlation structure between unobserved shifters and export demand shocks.

Nevertheless, on the demand side, import growth in foreignmarketsmight just happen
to be more positively correlated across industries that share more knowledge inputs. In
Appendix SectionA.4.6, I directly test and reject this hypothesis in the tradedata. A related
concern is that industries that share more knowledge inputs are also disproportionately
complementary in demand. If true, a demand shock in only one of these industries is
enough to trigger an increase in sales in both. To mitigate this concern, I show that
results continue to be significant when I purge from the sales of industry j all exports to
destination countries where the demand shocks for other industries k originated.28

On the supply-side, my preferred interpretation is that firm-specific supply-side in-
novations are the precise result of these cross-industry demand shocks, and therefore a
part of the estimated spillover response. There is, however, a less organic interpretation:
firms that anticipate positive supply-side shocks in a pair of industries j, k select into
exporting in those industries (and, in particular, to faster-growing markets with higher
demand shocks). For this interpretation to also explain the null coefficients in columns
(2) and (3) of Table 2, firms would have to be systematically better at anticipating these
effects in knowledge-input-intensive industries. Suppose, for the sake of argument, that
this were true. Sales growth would become a function of pre-existing joint production
and exporting patterns (driven by supply shocks observable to the firm but unobservable
to the econometrician). But I show that this hypothesis does not survive the following

27However, a demand shock in industry k can be arbitrarily correlated with unobserved supply and
demand shocks exclusive to that same industry—this would merely change the interpretation of the own-
industry elasticity, ψOWN . Demand shocks also do not need to be unanticipated. Regression coefficients
pick up precisely the endogenous supply side response in industry j to demand shifters in industry k. The
possibility that a particular shock is anticipatable t years ahead of time simply changes the interpretation
of the relevant time horizon for a supply-side response to materialize.

28Results are also robust to controlling for latent demand shocks—a measure of demand for industry j of
the firm not from where it is currently exporting the goods (which is ∆ log S f jt) but from the other export
destinations to which it currently sells goods in other industries.
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placebo exercise. I re-assign firm-industry exporters in each industry k different export
demand shocks drawn from the empirical distribution of shocks in that industry. Keeping
all remaining firm variables (e.g. firm-industry production weights, and other controls)
the same in these placebo regressions, I do not find a statistically significant number of
positive spillover coefficients.29

Finally, inAppendix SectionA.4.7, I test and reject othermechanisms that could explain
the spillovers, such as vertical (both upstream and downstream) intra-firm relationships
between k and j.

2 Quantitative Framework of Joint Production

This section develops a quantitative model of joint production to interpret and quantify
the reduced-form evidence. I propose a general mapping from inputs to outputs where
two properties of inputs lead to production interdependence: scalability and mutability.
Within the firm, the more that a pair of industries share scalable, mutable inputs in
production, the higher is the cross-industry impact of demand shocks on sales. I embed
this flexible supply-side within an otherwise standard setting featuring monopolistic
competition and CES demand, generalizing workhorse models of heterogeneous firms
(Melitz, 2003) by allowing for variable cross-industry price elasticities of supply within
the firm.

2.1 Market Structure and Production Technology

A continuum of firms compete in a set of industries J under monopolistic competition
facing CES demand with elasticity σ j . I abstract from demand complementarities across
industries, strategic interactions across firms, and variablemarkups so that the only source
of interdependence in a firm’s profitmaximization problem comes fromproperties of joint
production.

Figure 3 provides a visual illustration of the joint production technology—the process
by which a firm’s use of inputs generate outputs across industries. The transformation of
inputs to outputs occurs over two stages. In stage I, the firm uses inputs to accumulate
composite levels of capital in each industry. In stage II, the firm spends on variable
production inputs, which, together with capital, generate output in each industry.

29These results are undisclosed but available upon request. This is also a placebo test to make sure that
pre-existing variation in bilateral industry characteristics such as the extent of knowledge-input sharing do
not drive spillovers.
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Figure 3: Illustration of Joint Production Technology within the Firm

Notes: This figure provides a visual illustration of the firm’s two-stage joint production process for a given
firm. There are two types of inputs (displayed in blue): stage I inputs are called capital inputs, while stage
II inputs are called production inputs. Capital inputs are used to generate a discrete set of various types of
capital (displayed by the small grey circles) that together make up the firm’s accumulated capital (displayed
in white). Quality-adjusted outputs are denoted in orange. Profitability shifters (displayed in grey) are
exogenous and observable by the firm in both stages. The technology extends easily from the displayed
case of two industries j, k to accommodate additional industries k′, k′′, ... The only difference would be an
increased range of options for the stage I allocation of capital.

Assumption 1 (Industry Production Function) In each industry j, quality-adjusted quanti-
ties q f j is a Cobb-Douglas function over three terms: (i) a composite production input, l f j , (ii)
accumulated capital, ϕ f j , and (iii) an exogenous profitability shifter, ξ̃ f j :

q f j � l
γj

f j ϕ f j ξ̃ f j (4)

where γj ∈ [0,
σ j
σ j−1) is the elasticity of output with respect to the production input composite, l f j .

I segment the universe of inputs into two categories and assume that firms are able to
purchase each type of input at constant unit prices. The first category consists of production
inputs, such as labor, materials, and energy, that together make up a homothetic constant-
returns composite production input denoted by l f j .

The second category, capital inputs, includes knowledge workers like scientists as well
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as physical equipment.30 The firm uses these inputs to accumulate capital (ϕ f j) in each
of its industries. Accumulated capital reflects the composite value of attributes such
as robotics, assembly-line productivity, customer lists, warehousing capabilities, product
design, andbrand capital. ‘Capital’ in themodel is thus a broad catch-all that includes both
intangible knowledge assets and specialized capital equipment that have been tailored to
the specific production process of the firm.

Lastly, the production function includes shifters (both demand and supply), ξ̃ f j , that
stand in for the firm’s exogenous levels of brand appeal, capital or technology in each
industry. The firm makes input purchase, capital allocation, and production decisions
conditional on knowledge of ξ̃ f j .

The firm’s problem is to spend on inputs given constant unit prices to maximize total
profits (revenues net of costs) across all industries. Relative to the case of a single-industry
production function, the multi-industry firm faces a potential tradeoff between capital
allocation in one industry versus another. However, in line with the empirical evidence,
production inputs in stage II are still assumed to be separable across industries. Given
these assumptions, it is easy to solve for the firm’s decisions in reverse order.

2.2 Stage II: Production and Competition

In this last stage, the firm takes its accumulated levels of capital (ϕ f j) and exogenous
shifters (ξ̃ f j) as given and thus operates an independent production function in each
industry. The firm’s problem boils down to maximizing gross profits (π f j , revenues less
production input expenditures) under monopolistic competition with CES demand and a
non-unitary output elasticity (γj) with respect to the composite production input.

The solution to this problem yields gross profits and sales, X f j , as a function of
an industry-wide residual profit index, B j , the exogenous profitability shifter ξ̃ f j , and
accumulated capital, ϕ f j :

π f j � (1 − ς j)X f j � B jξ f jϕ

σ j−1
σ j (1−ς j )

f j , (5)

where ς j ≡ γj
σ j−1
σ j

is a constant share of industry sales expensed on production inputs,

ξ f j ≡ ξ̃
σ j−1

σ j (1−ς j )

f j is a convenient re-normalization of the exogenous shifter. Lastly, industry-

30‘Capital’ in the model is purely a semantic label, chosen to acknowledge the traditional assumption
that ‘capital’ levels are determined before variable (production) inputs. There are no ex-ante restrictions on
what these inputs actually are in the data. Some of these inputs (such as R&Dworkers) might fall under the
‘knowledge’ classification adopted in the reduced-form, while some others (laundry services) might not.

22



wide residual profits B j depends on the cost of a bundle of production inputs c j , the CES
price index in the output industry, P j , and total expenditures in the market, Yj :

B j � (1 − ς j)
(

c j

ς j

) ς j
ς j−1 (

P
σ j−1
j Yj

) 1
σ j (1−ς j ) . (6)

2.3 Stage I: Accumulation of Capital

Whereas physical production in stage II is separable across industries, capital accumula-
tion in stage I is plausibly interdependent across industries. I model this process to reflect
two realistic characteristics of capital: discreteness and mutability.

First, capital accumulation is an inherently discrete process. A scientist generates a
new invention only once in a while, and the development of new land occurs sporadically.
I assume that capital inputs ι f m increase the Poisson arrival rate of new capital:

A f m ∼ Poisson ©«Z
(
ρm

ρm − 1 ι f m

) ρm−1
ρm ª®¬ , ∀m ∈ M ,

whereM denotes the set of capital inputs, Z is a technology coefficient, and ρm ∈ (1,∞)
parametrizes scalability. The higher is ρm , the more elastic is the arrival rate to increased
capital spending.

The firm chooses the best industry in which to allocate each arrival of new capital.
Mutability, the second property, reflects variation in the match-specific value of capital
across industries. For example, an engineer hired at the onset to improve battery longevity
in vacuum cleaners may ultimately generate ideas that are more valuable for increasing
battery efficiency in electric vehicles. I model the value of a given piece of new capital
(denoted i) in a given industry j as an independent Fréchet random variable:

Pr(φ f jm ,i ≤ x) � e−x−θm
, ∀ j ∈ J , ∀m ∈ M ,

where the shape parameter θm ∈ (1,∞) parametrizes immutability. The higher is θm , the
lower is the variance of the distribution, and the lessmutable is capital across industries.31

Throughout stage I, a total of A f m pieces of new capital of each type m arrivewithin the
firm. I assume that capital across and within input types m ∈ M are additively separable
in their contribution to the composite index of accumulated capital.

31In the limit as θm → ∞, the distribution collapses to a degenerate point and the value of new capital
becomes identical across industries, and fully predictable ex-ante.
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Assumption 2 (Accumulation of Capital) Firms deploy each piece of new capital i of type
m to a single industry j knowing its match-specific values across industries {φ f jm ,i} j∈J . The
cumulative effect on the composite indices of industry-specific capital {ϕ f j} j∈J is additive:

ϕ

σ j−1
σ j (1−ς j )

f j �

∑
m∈M

A f m∑
i�1

α̃m jφ f jm ,i 1 f jm ,i , ∀ j ∈ J ,

where α̃m j is a technology parameter governing the average productivity of type-m capital when
applied to industry j, and 1 f jm ,i is the firm’s deployment decision variable: equal to 1 if opportunity
i from input type m is deployed to industry j, and 0 otherwise.

The technology parameters α̃m j allow capital in certain industries j to benefit more
from the contributions of certain inputs m. Differences in these parameter values generate
differences in technological similarity across industries. To take an extreme example, an
input m that only produces useful capital in a particular industry j would have all α̃mk � 0
for k , j, and there would be no capital accumulation tradeoffs across industries from the
firm’s use of that input.

Crucial for tractability, this functional formassumptionmakes eachnewpiece of capital
additively separable in profits (given by equation 5). The optimal industry in which to
deploy any piece of new capital becomes memoryless—independent of past or future
decisions. The probability that any new capital of type m is deployed in industry j is
given by:

µ f m j ≡
δθm

f m j∑
k∈J δ

θm
f mk

, δ f m j ≡ ξ f jαm jB jZ, (7)

where δ f m j is an exogenous index of residual profitability of input m in industry j in firm
f and increasing in the technology parameter (renormalized as αm j ≡ α̃m jΓ(1 − 1/θm)),
the firm’s productivity shifter in the industry ξ f j , and industry residual demand B j .

When inputs are more mutable (θ is lower), capital is distributed more evenly across
industries. Even industries with inherently low residual profitability could become the
optimal target for new capital deployment whenmatch-specific variation in φ f jm ,i is high.
On the other hand, when capital inputs are immutable, exceptionally positive shocks
in φ f jm ,i become much rarer. New capital becomes deployed repeatedly towards the
industry of the firm with the highest residual profitability, δ f m j .

Lastly, discreteness in the capital accumulation process explains the firm’s extensive
margin without the need for literal fixed costs.32 Because capital is necessary for produc-

32The use of discrete stochastic processes to explain ‘zeros’ (the absence of firm entry) is inspired by
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tion, a firm is active in industry j if and only if it decides to accumulate any capital in that
industry. All else equal, the more mutable are capital inputs, the more likely is the firm to
deploy new capital over different industries, and the wider is the scope of the firm.

2.4 Solution of the Firm

These properties of joint production convexify the firm’s profit maximization problem
over all industries (which industries to enter, and how much of output in each industry
to produce). The first piece of capital allocated to an industry represents industry entry,
and any subsequent capital allocation improves capital on the intensive margin. Because
of additive separability, a firm is as likely to assign a first piece of capital to an industry as
it is a second, conditional on those opportunities arriving.

The firm decides its expenditures on each type of capital input given the degrees
of scalability (ρm) and mutability (θm) behind the capital accumulation process. The
solution simply equates the expected marginal revenue of each input with its marginal
cost (a constant). Decreasing returns to scale in the ability of capital inputs to increase the
arrival rate of new capital (ρm−1

ρm
< 1) guarantees an interior solution.

But how valuable is each piece of new capital? The firm internalizes its ex-post ability
to choose the most profitable application among all industries j after observing match-
specific shocks φ f jm ,i . The greater is the variance in the distribution of match-specific
shocks, the greater is the expected value of the maximum. Mutability thus generates a
form of ex-ante option value for the firm:

Lemma 1 (Option Value fromMutability and Scope) Given Assumptions 1 and 2, the ex-
pected contribution to gross profits of any idea generated by specialized input m is given by∆ f m/Z,
where ∆ f m is a power sum of residual profitability of input m over industries j :

∆ f m ≡
©«
∑
j∈J

δθm
f m j

ª®¬
1
θm

, δ f m j ≡ ξ f jαm jB jZ, ∀ j ∈ J , ∀m ∈ M

The expected scope of the firm increases with mutability (decreases with θ), and the value of any
given idea is increases with mutability and scope.

Klette and Kortum (2004), Eaton et al. (2013), and Armenter and Koren (2014), and present theoretical and
computational advantages over models with literal fixed costs. Fixed costs generate non-convexities from
the point of view of not just firms but also the aggregate economy. Recent work by Jia (2008), Antràs et al.
(2017), and Arkolakis and Eckert (2017) provide algorithms that reduce the computational burden of fixed-
cost models but operate under a partial equilibrium framework where residual profits are fixed. Instead,
in my stochastic setting each individual firm’s profit maximization problem is convex, which reduces
dimensionality and guarantees a unique solution for residual profits {B j} j in multi-industry equilibrium.
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There are two illustrative limit cases. As θm → 1, inputs become so mutable that
the ex-ante expected value of the best industry application is equal to the simple sum
of residual profitability across all industries,

∑
j∈J δ f m j . New capital is valued as if it is

non-rival—contributing jointly and fully in each industry of the firm. On the other hand,
as θm → ∞, inputs are completely immutable. The ex-ante expected value of the best
industry simply equals max j∈J {δ f m j}, and option value disappears. The firm makes
input purchases with full foresight of which industry the inputs will be used towards
building capital.

The firm’s expected sales and profits are expressed in closed-form in Lemma 2.

Lemma 2 (The Firm’s Solution) Given Assumptions 1 and 2, the expected gross profits of any
firm f in any industry j ∈ J is a constant fraction (1 − ς j) of expected sales:

E[π f j] � (1 − ς j) E[X f j] �
∑

m

δθm
f m j∆

ρm−θm

f m w1−ρm , (8)

and the probability that a firm enters industry j, denoted χ f j � 1, is given by

Pr(χ f j � 1) � 1 − exp

(
−Z

∑
m

δθm
f m j∆

ρm−1−θm

f m w1−ρm

)
. (9)

Expected net profits of the firm are given by expected stage II gross profits over all industries less
stage I expenditures on capital inputs:

E[Π f ] �
∑

j

E[π f j] −
∑

m

wι f m �

∑
m

1
ρm
∆
ρm

f mw1−ρm , (10)

where w denotes the constant marginal cost of all capital inputs.

2.5 Industry Spillovers within the Firm

Equation (8) demonstrates how scalability andmutability forces (ρm−θm) govern the inter-
dependence of production across industries. A demand shock that increases profitability
in industry k (an increase in Bkξ f k) affects the firm’s accumulated capital in another indus-
try j through two channels: a substitution effect and a scale effect. First, holding capital
spending constant, the firm is more likely to deploy capital in industry k rather than j the
more higher is θm .33 This reduces the firm’s accumulated capital in j. However, the firm

33The use of this Fréchet shape parameter to model choice shares was introduced to trade by Eaton and
Kortum (2002). However, rather than focusing on θ as a choice-share elasticity, my paper exploits the role
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would also increase its spending on capital inputs, raising the arrival rate of capital the
higher is ρm . This increases accumulated capital in j holding capital allocation constant.
The net effect boils down to a trade-off between substitution (decreasing with mutability)
and scale, averaged over the capital inputs m that are most technologically relevant for
production in j and k.

In Proposition 1, I formalize this intuition by log-differentiating equation (8). First, the
impact of a demand shock in industry k on firm sales in the same industry k is always
positive. But the impact of a shock in k on sales in another industry j is ambiguous.
Spillovers are more positive and stronger among industries that share more scalable (high
ρm) and mutable (low θm) capital inputs.

Proposition 1 (Spillovers within the Firm) The elasticity of expected firm sales in any indus-
try j, E[X f j], to a change in residual profitability in any industry k is given by:

ψ f jk ≡
d logE[X f j]
d log ξ f kBk

�

∑
m∈M
(ρm − θm) λ f jm µ f mk + 1 j�k

∑
m∈M

θm λ f jm , ∀ j, k ∈ J , (11)

where µ f mk are deployment shares given by equation 7 and λ f jm denote utilization shares: the
share of gross profits of industry j attributable to potential contributions by capital input m:

λ f jm ≡
µ f m j∆

ρm

f mw1−ρm∑
m′ µ f m′ j∆

ρm′
f m′w

1−ρm′
.

Proposition 1 rationalizes the existence of both positive and negative cross-industry
elasticities of sales to demand shocks in Section 1. The theory also nests two instances
where the null hypothesis of production independence (zero spillovers) would hold. First,
production is independent when capital inputs are industry-specific, i.e. each input m
affects only a single industry j. Second, production can also be independent under the
knife’s edge case where scale and substitution effects perfectly offset: θm � ρm ∀m. For
example, if capital inputs are completely unscalable and also perfectly mutable (ρm �

1 � θm), capital accumulation is isomorphic in expectation to exogenous firm-industry
‘productivity draws’.34

The cross-industry (expected) sales elasticities in Proposition 1 can be decomposed into

of θ in the Fréchet functional form for expected value.
34Technically, when θ � 1, deployment shares µ f m j still respond to changes in market profitability across

industries {δ f m j}k∈J . However, the value of capital conditional being deployed to a particular industry
changes as well. Like in Eaton and Kortum (2002), two forces generate perfect offset such that the ex-ante
expected value of capital deployed to any industry is invariant to changes in market conditions.
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constituent extensive and intensive margin responses. Equation (9) in Lemma 2 provides
an analytical expression for the extensive margin entry probability in a given industry.
The impact of demand shocks on the probability of entry depends on the same scale and
mutability properties of capital inputs discussed in Proposition 1. Lemma 3 in the Theory
Appendix provides an exact decomposition and shows that the total elasticity of sales to
demand shocks mostly occurs on the extensive margin for small firms and mostly on the
intensive margin for larger firms (such as those in my regression sample).

3 Structural Estimation

While the reduced-form results in Section 1 focus on intensivemargin log-linear responses,
the theory in Section 2 predicts non-linear functional forms and variable cross-industry
elasticities. This section bridges the divide. I use an exact connection between moments
in the data and the theory to structurally estimate themodel’s parameters. In line with the
reduced-form evidence, I estimate that knowledge inputs are scalable as well as mutable,
whereas other capital inputs are much less scalable and mutable.

3.1 Overview and Assumptions

I conduct inference through a nested-fixed-point search across micro and macro param-
eters. Conditional on macro variables (residual demand levels, technology parameters),
I use cross-industry responses to shocks within the firm to identify micro parameters
(scalability and mutability). Conditional on micro parameters, I use observable ‘macro’
data from the BEA (industry gross output and industry-by-input expenditures) to iden-
tify macro variables by inverting a non-linear system of equilibrium conditions. This
subsection provides assumptions that enable the interface between micro and macro.

Input Taxonomy

Estimation relies on data on industry-by-input expenditures from the BEA Industry ac-
counts. I classify stage II production inputs as the set of agriculture, mining, construction,
utilities, manufactures, wholesale, retail and transportation industries, and labor value
added.35 I assume that the production input composite l f j in each industry is a homothetic
constant-returns aggregate over these inputs.

35These correspond to NAICS sectors 1, 2, 3, 4, and labor value added.
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I group remaining inputs that are less directly related to production into four cate-
gories of ‘capital’ inputs denoted by m ∈ M. Consistent with the reduced-form evidence
in Figure 2, I use the same three categories of knowledge-generating inputs that plausi-
bly contribute towards the firm’s intangible capital stock: (i) leasing of intangibles, (ii)
headquarters services, and (iii) information and professional services. Finally, I create
(iv) a residual capital input category containing all remaining inputs delineated in the
input-output tables.36

I estimate a pair of scale and mutability parameters (ρKLG , θKLG) common to the first
three categories of knowledge inputs, and another set of scale and mutability parameters
(ρRES , θRES) for the residual capital input. I let Θ ≡ {ρKLG , θKLG , ρRES , θRES} denote the
parameter set containing these production function elasticities.

Variation over time

To leverage time-variation within the firm for structural estimation, I interpret data from
each period t � {1, 2, 3} as the outcome of a separate static equilibrium featuring the
two stages of capital accumulation and production. This is equivalent to assuming that
accumulated capital depreciates completely at five-year frequencies and so all inputs of
the firm are variable.37 However, latent firm-industry profitability shifters, ξ f jt , persist
over time. These attributes stand in for fixed capital and explain correlation of outcomes
within a firm over time even in the absence of other shocks.

I fix the overall mass of potential entrants at N . These firms naturally move in and out
of industries over time due to stochasticity in the accumulation of capital. An inactive firm
is any firm that, despite its chosen level of capital expenditures, has not had any arrivals
of capital. In any period in which this happens, the firm will have zero sales, fall out of
the observed sample, and thus ‘exit’. Likewise, in any subsequent period in which the
same firm accumulates capital, the firm reappears as an entrant.

36These correspond to NAICS sectors 52, 531, 532, 56, 6, 7, 8, 9 and physical capital investments. I col-
lapse all these inputs to just one category because the reduced-form results do not uncover any bilateral
expenditure-driven industry proximity other than knowledge inputs (the first three categories) that gener-
ates spillovers. This significantly reduces the number of technology parameters that I need to invert for and
speeds up computation.

37The memoryless and additive separability assumptions in the model enable tractability even in a full-
fledged dynamic setting. Estimation of depreciation parameters, however, would require longer periods of
data than what I have.
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Profitability Shifters and Demand Shocks

The firm’s profitability shifters across industries, ξ f jt , are unobservable to the econome-
trician. I assume that they are distributed according to a joint lognormal:

Assumption 3 (Profitability Shifters are distributed Lognormal) Latent firm-industry prof-
itability shifters are distributed joint lognormal according to:

ξ f j,t�1 �ζ f j ζ f , ∀ f , j

log ζ f j ∼i.i.d. N(0, γ0), log ζ f ∼i.i.d. N(0, γ1), ∀ f , j.

The means of the lognormal distributions are isomorphic to proportional shifters in
industry residual demand, B j , so the normalization to 0 comes without loss of general-
ity. The variance parameters γ ≡ {γ0, γ1} control firm-level comparative and absolute
advantage respectively. First, the higher is γ0, the more dispersed is profitability across
industries within the firm, and the more persistent is the firm’s extensive margin across
periods (due to firms repeatedly accumulating capital in its most profitable industries).
I estimate γ0 by matching the aggregate share of industries of multi-industry firms that
survive over 5-year intervals to that in the data, equal to 0.42. Second, the higher is γ1, the
larger are differences in absolute firm size. I estimate γ1 by matching the aggregate share
of sales by multi-industry firms in 1997 to that in the data, equal to 0.75.

In each year, a discrete and measure-zero set of firms F T receive export demand
shocks {∆ log S f jt} j∈J as constructed in the data. I assume that these shocks affect firm
profitability, {ξ f jt} j∈J as follows:

Assumption 4 (Impact of Demand Shocks) Demand shocks as constructed in the data affect
firm-industry latent profitability shifters according to

∆ log ξ f j,t � ν ∆ log S f jt , ∀ f ∈ F T , j ∈ J , t � {2, 3}.

The parameter ν is a ‘first-stage’ elasticity that captures the impact of an export demand
shock ∆ log S f kt at shifting a firm’s profitability in that industry.38 I estimate ν by relying
on the following log-linear relationship between expenses on professional services (one
of the four categories of capital inputs), MPROF

f t , and demand shifters at the level of the

38This assumption can be explicitly micro-founded in a multi-destination exporting model in which firms
draw different latent initial taste shifters across destinations. These initial shifters inform pre-existing
patterns of exporting, and subsequent changes in foreign market size across destinations will differentially
affect firms’ market sizes.
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firm:
∆ log MPROF

f t � ρKLG · ν
∑
k∈J

ηPROF
f k ,t−1∆ log S f kt ,

where the theoretical expenditure shares ηPROF
f k ,t−1 are approximated using aggregate I/O

expenditure shares of an industry on professional services, βk ,PROF:

ηPROF
f k ,t−1 ≡

∑
m∈M µ f mk ,t−1∆

ρm

f m ,t−1∑
m∈M ∆

ρm

f m ,t−1

≈
βk ,PROFX f k ,t−1∑
k βk ,PROFX f k ,t−1

.

Column (1) of Table 3 estimates the combined elasticity at ρKLGν � 0.65. This ‘offline’
relationship yields a value of ν conditional on any estimate of ρKLG, and helps reduce
dimensionality of the non-linear search below.

3.2 Identification of Macro Variables

Table 4 provides an overviewof themacro-level variables that can be identified conditional
on micro parameters Θ, γ, and ν. First, I set the mass of firms at N � 318000, the total
number of unique firms ever to appear in the 1997 census of manufacturing (including
administrative and inactive records). Second, I read off ς j from the share of gross output
expensed on production inputs in the BEA industry tables. Third, I estimate the average
arrival rate of capital, Zt , by matching the model’s share of multi-industry firms to that in
the data in each year (0.2).39

Finally, I use BEA data on output X jt and input expenditures M jmt by industry to
identify residual profitability indices B j and technology matrix α ≡ {αm j}m , j . I use data
from 1997 (the latest year with detailed BEA input-output and capital use data) to identify
α and assume that these technology coefficients are time-invariant over the period of my
sample. Although capital input expenditures in the model are at the firm-level, BEA data
has these expenditures aggregated by industry. I assume that, for multi-industry firms,
accounting over these expenditures is proportionalized across industries with respect to
deployment shares µ f m j .40 I tally up the model’s predicted industry sales and input

39This parameter mediates the importance of the extensive margin number of arrivals relative to the
intensive margin quality per arrival. While it has no aggregate implications (aggregation includes both
intensive and extensive margins), it does affect estimation because computation of the conditional moment
condition matches firms in the model to that in the data based on their extensive margin outcomes.

40An alternative assumption is that the BEA allocates all of a firm’s capital input expenditures to the firm’s
first industry of deployment. This yields the same aggregate prediction as equation (12).
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Table 4: Overview of Model Primitives and Source of Identification

Variable and Description Source of Identification
Micro Parameters
Θ Scale and rivalry elasticities of capital inputs Within-firm spillovers, ψ f jk
γ0 Within-firm heterogeneity in ζ f j Share of industries that continue (0.42)
γ1 Across-firm heterogeneity in ζ f Share of sales by multi-industry firms (0.75)
ν Responsiveness of ξ f jt to export demand shocks Assumption 4, Table 3, ρINTν � 0.65

Macro Variables
N Mass of latent firms All active and inactive firms (318,000)
ς j Production input expenditures as a share of sales Corresponding share in I/O Table
Zt Efficiency of innovation on the extensive margin Share of multi-industry firms (0.2)
B jt Equilibrium industry-wide residual profit shifter Gross Output X jt
αm j Effectiveness of capital input m for industry j I/O Table Expenditures Mm j

spending to yield the following system of | J | ×3+ | J | × |M | equations in as many variables:

N
∫ ∑

m∈M
δθm

f m jt∆
ρm−θm

f mt dG(ξ) � (1 − ς j)X jt , ∀ j ∈ J , t � {1, 2, 3},

ρm − 1
ρm

N
∫
δθm

f m jt∆
ρm−θm

f mt dG(ξ) � Mm jt , ∀ j ∈ J , t � 1, m ∈ M ,

(12)

whereG(ξ; γ) is the joint-lognormal distributionof ξ givenbyAssumption 3.41 I normalize
the single factor price wt to equal one in each year after deflating outcome variables by
wage inflation. I exploit a recursive computational algorithm that speeds up inversion of
this large set of macro variables and provide more details in Appendix C.1.

Notably, inference of macro variables is agnostic to general equilibrium details of the
model (such as trade or input-output linkages) as long as they affect all firms equally.
For example, if there is no selection into exporting, sourcing, or integration strategies, B jt

encapsulates the net effect of all export market access, import market competition, as well
as prices of intermediate inputs. Put differently, while these forces affect the interpretation
of what goes inside residual demand B jt , they don’t affect the inversion of B jt outlined
in equation (12). Data on sales X jt is a sufficient statistic. Estimation is also invariant
to values of returns to scale in the index of physical inputs γj and demand elasticities
σ j . Instead, the relevant parameter ς j � γj

σ j−1
σ j

combines both and can be read off of the
input-output tables.

41With an abuse of notation, a variable subscripted with f indicates that it is dependent on the vector of
profitability shifters ξ f .
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3.3 Identification of Scale and Mutability Parameters

I define firm-industry level structural residuals, ε f jt , as the linear deviation of observed
sales in the data from expected sales in the model:

ε f jt ≡ X f jt − E[X f jt | ξ f t , Bt , α, Z;Θ].

Variation in ε f jt comes from stochasticity in the accumulation of capital ϕ f j (driven by
the Poisson arrival process and Fréchet-distributed match-specific shocks). The structural
residuals are mean-independent of demand shocks ∆ log S f s for any year s and industry
presence in any prior year χ f ,t−1, since the conditioning variables contain all the relevant
information for the firm’s expenditure and production decisions in any given year t.
Formally, applying the law of iterated expectations (on ξ f t) yields

E[ε f jt | ∆ log S f s , χ f ,t−1] � 0, ∀ f , j, t , s .

I use the vector of demand shocks, ∆ log S f s , as instruments to identifyΘ. However, a
key challenge is that firm-specific profitability shifters ξ f t are unobservable to the econo-
metrician but plausibly correlated with next-period demand shocks. This correlation
occurs mechanically in my empirical setting, where, by construction, demand shocks are
zero whenever a firm is not active in an industry.

My identifying assumption is that demand shocks ∆ log S f s are uncorrelated with
unobserved profitability shifters, ξ f ,s−1 and sales X f ,s−1 conditional on pre-period industry
presence, χ f ,s−1. This assumption is a significant weakening over a simple (unconditional)
exogeneity assumption, because it allows shocks to be non-parametrically correlated with
past industry presence. In other words, identification only requires that shocks are as
good as randomly assigned among firms with identical extensive margins.

Assumption 5 (Conditional Independence) Export demand shifters are randomly assigned
to firms conditional on pre-existing industry presence:

∆ log S f jt ⊥ {ξ f k ,t−1,X f k ,t−1}k∈ J | {χ f k ,t−1}k∈ J ∀ j ∈ J , t � 2, 3.

I conduct inference using a moment estimator on a simulated sample of firms, s ∈ S.
A computational challenge is that the profitability shifters ξ f of firms in the data sample
are unobserved. If demand shocks were purely exogenous, an average over the simulated
firms drawn from the (prior) distribution of ξ f given by Assumption 3 would suffice.
But because demand shocks are only assumed to be exogenous conditional on a firm’s
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pre-period extensive margin, I need to integrate over the (posterior) distribution of ξ f

conditional on the firm’s extensive margin. I exploit the closed-form expressions for firm
entry into an industry (equation 9) to compute analytical expressions for these posterior
weights, denoted ω f s .

Proposition 2 (Inference of Scalability and Mutability) Let ˜∆ log S f kt denote demeaned de-
mand shocks by industry-year. Define the following analytical sample moment conditions for a
pair of industries j, k and year t � {2, 3}:

m jkt ≡
1

n jk ,t−1

∑
f ∈n jk ,t−1

(
(X f jt − X f j,t−1) −

∑
s∈S

ωs f ,t−1 µ f jk(ξs ,∆ log S f t)
)

˜∆ log S f kt ,

where n jk ,t−1 is the set of firms f in the data with positive sales in j and k in year t−1, s ∈ S denotes
a sample of simulated firms with profitability shifters ξs drawn from distribution G(ξs) according
to Assumption 3, ω f s refers to the probability that a simulated firm (s) (with fundamentals ξs)
matches that of a firm ( f ) in the data (industry presence χ f ,t−1) relative to other s′ ∈ S:

ω f s ,t−1 ≡
∏

j Pr(χ j,t−1 � χ f j,t−1 |ξs)∑
s′
∏

j Pr(χ j,t−1 � χ f j,t−1 |ξs′)
,

and µ f jk is model-implied expected sales growth given by

µ f jk � E[X f jt |ξ′s] − E[X f j,t−1 |ξs , χ f j,t−1 � 1],

where next-period latent profitability ξ′s evolves conditional on ξs and empirical demand shocks
∆ log S f t according to Assumption 4.

At true parameter values Θ, γ, as the data and simulation samples get large, N, S → ∞ , the
sample moment m jkt � 0 for any j, k and t ∈ {2, 3}.

Proposition 2 delivers J × J moment conditions (for each year t � 2, 3) that can be
used to estimate Θ. In practice, there are very few non-zero observations for each pair
of industries j and k. I thus collapse the moments in each year to the following four
categories based on ex-ante observable bilateral characteristics.

(i) Main diagonals of the matrix, j � k, for industries j where expenditures on knowl-
edge inputs as a share of gross output is higher than the mean. This helps identify
the scalability of knowledge inputs ρKLG.
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(ii) Main diagonals of the matrix, j � k, for industries j where expenditures on knowl-
edge inputs as a share of gross output is lower than the mean. This helps identify
the scalability of residual capital inputs ρRES.

(iii) Off-diagonals of thematrix, j , k, for industry pairs jk whose proximity in the use of
knowledge inputs is higher than themean over all industry pairs. This helps identify
the mutability of knowledge inputs θKLG.

(iv) Off-diagonals of thematrix, j , k, for industry pairs jk whose proximity in the use of
knowledge inputs is lower than the mean over all industry pairs. This helps identify
the mutability of residual capital inputs θRES.

In total, I estimate six non-linear micro parameters (ρKLG , θKLG , ρRES , θRES , γ0, γ1)
using ten moments: four dynamic moments each year (for t � 2, 3) corresponding to the
four groupings of cells in the J× J matrix to estimateΘ, and two remaining cross-sectional
moments (from t � 1) used to estimate the variances in the lognormal distribution: γ0, γ1.
I use the identity weighting matrix to weigh moments.42 Estimation proceeds as follows:

1. Simulate a fixed set of 2000 firms, with baseline draws of ζs j , ζs from standard
normal distributions. I use stratified sampling to over-weigh firms with higher ζs .

2. Guess a starting Θ̂, γ̂0, γ̂1, then repeat Steps 3-5 until convergence criterion is met.

3. Compute ξs j given γ̂0, γ̂1 from Assumption 3 and ζs j , ζs .

4. Given ξs j and Θ̂, use macro data to invert for αm j , B jt , Z via equation (12).

5. Compute the sample moment conditions in Proposition 2, stack the moments as
described above, and use a bounded Nelder-Mead simplex search algorithm to
adjust the guess of Θ̂, γ̂0, γ̂1 given the change in the objective value.

Table 5 presents estimates of Θ, γ. Consistent with the reduced-form spillovers in
Section 1, I find that both sets of knowledge and residual capital inputs are mutable (with
low θ). However, knowledge inputs differ in that they are much more scalable within the
firm. The differences are large enough to generate opposing forces for spillovers: industry
pairs that share more knowledge inputs will have stronger economies of scope.

42Estimates do not change by much when using the optimal weighting matrix under 2-step GMM, which
I compute when conducting the test of over-identifying restrictions.
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Table 5: Estimated Scale, Mutability, and Firm Heterogeneity Parameters

Parameter Description Estimate S.E.

ρKLG Knowledge Input Scalability 12.64 (0.39)
θKLG Knowledge Input (inverse) Mutability 3.61 (0.07)

ρRES Residual Input Scalability 2.63 (0.05)
θRES Residual Input (inverse) Mutability 4.06 (0.12)

γ0 Degree of comparative advantage within the firm 0.85 (0.03)
γ1 Variation in absolute advantage across firms 0.99 (0.05)

Test of Over-identifying Restrictions: 7.28 ∼ χ2
4 p � 0.12

Notes: This table reports estimates of micro parameters in the model. The six parameters are estimated on the
sample of all multi-industry firms and the industries in which they are active, in years 2002-2007 and 1997-2002,
using 10 moments. There are 13,000 (rounded) firm-year observations used in the sample. Standard errors of
estimates are computed based on results from 21 bootstrap samples, where I re-draw over both the data and
the simulated ξ samples.

3.4 Model Fit and External Validation

The estimated parameters fit the micro variation targeted in the data reasonably well.
A test of over-identifying restrictions does not reject the null that the moments used in
estimation are jointly valid. In the rest of this section, I provide external validation.
Despite its limited number of (six) micro parameters, the model is capable of reproducing
static moments of the data that are not targeted in estimation.

First, the model matches the distribution of the number of firms and their sales over
firm scope. Figure 4 shows that the data and the model form a close match—firms with
higher scope are increasingly scarce but also increasing large in overall sales. Both the
data and the model attribute a significant size premium to the extreme right tail of the
firm scope distribution (firms with 9 or more industries), though the model somewhat
undershoots the data because it cannot account for the existence of true conglomerates
and holding companies. Overall, the close fit between the model and data validate the
model’s parametric assumptions (Poisson and Fréchet).

Lastly, I test the model’s predictions on which industries tend to be jointly produced
against the data. I measure joint production in a pair of industries j, k as the share of
industry j sales by firms that also sell in k:

JointProd jk ≡
∑

f X f j1X f k>0∑
f X f j

,
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Figure 4: External Validity: Distribution of Firms and Sales by Scope

(a) Share of firms by scope (b) Share of sales by scope

Notes: Panel (a) plots the share of total firms accounted for by firms across the scope distribution, comparing
the data (in 1997) to the model. Panel (b) plots the share of total sales accounted for by firms across the
scope distribution, comparing the data to the model. See Appendix Table 12 for the numbers behind these
figures.

and industry joint-utilization of knowledge inputs as

ProxKLG
jk ≡

∑
m∈MKLG

βm j
βmk∑
k′ βmk′

.

Empirically, joint production between a pair of industries is higher the more that
the pair of industries share knowledge inputs. In panel (a) of Figure 5, I visualize this
relationship in the data in terms of a binscatter for the full 42,240 pairs of industries j , k in
1997. In panel (b), I find that the estimated model reproduces this strong bilateral positive
association between joint production and the joint utilization of knowledge inputs. A
firm in the model is more likely to jointly enter a pair of industries j, k the more that
the industries share knowledge inputs. Intuitively, joint entry is more likely to occur
because knowledge inputs are more scalable (resulting in higher investments by the firm)
and mutable (resulting in a greater fraction of times that the firm chooses to accumulate
capital in both industries).

4 The Macroeconomic Implications of Joint Production

Joint production within the firm leads to aggregate economies of scale and scope—a
new dimension through which industries are linked in the macroeconomy. I characterize
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Figure 5: External Validity: Joint production in the Data and the Model

(a) Joint production in the Data (b) Joint production in the Estimated Model

Notes: These panels display the relationship between bilateral industry joint production (share of industry
j sales by firms with activities in k) and a measure of jk proximity in the utilization of knowledge inputs, in
(a) the data, and (b) the model.

these effects using a matrix, Ψ, of cross-industry elasticities of the producer price index
to market size. I show how elements of this macro cross-industry matrix depend on
the microeconomic properties of joint production—scalability and mutability of capital
inputs. Using the estimated production parameters, I quantify the mechanism in general
equilibrium and apply the model to revisit the implications of US trade policy.

4.1 Industry Linkages from Joint Production

I close themodel in general equilibrium by limiting cross-industry effects to either internal
properties of joint production or external input-output linkages. I shut downdemand-side
industry linkages by assuming that upper-tier consumer demand is Cobb-Douglas across
industries. I provide results under two alternative assumptions on the production input
composite l f j : (i) that it is purely labor value-added, so there are no vertical production
linkages, or (ii) that it is a Cobb-Douglas constant-returns aggregator over production
inputs (which include the output of upstream manufacturing industries).

Imodel theUS economy (denoted u) under tradewith a set of foreignpartners (denoted
d ∈ DF) and assume that foreign variables (industry expenditures and price indices) are
exogenous. Domestic price indices, however, are endogenous and feed back to firm
production decisions through the usual input price and output competition (residual
profitability) mechanisms. I abstract from wage effects by assuming that there is a large
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enough non-manufacturing sector that is traded at some exogenous world price. Rather
than causing domestic wages to adjust, trade policies and foreign shocks affect US total
manufacturing output. I abstract from the formation of new fixed capital (i.e. new draws
of {ξ f j} f through firm creation) and focus on interactions among existing (including
inactive) firms. All firm profits are spent on the non-manufacturing sector to shut out
manufacturing-demand-driven feedback effects.

Definition 1 in the Quantitative Appendix formalizes these assumptions in terms of
general equilibrium conditions in the economy. I study the impact of exogenous demand
shocks on the domestic (quality-adjusted) producer price index (PPI), Pj :

P1−σ j

j ≡ N
∫
E

[
p

1−σ j

f j

]
dG(ξ).

I log-differentiate the system of market clearing equations in Definition 1 to derive the
general equilibrium impact on domestic producer price indices, P, from any exogenous
unit-elasticity shifter of market size, S.

Proposition 3 (Aggregate Impact of Joint Production) Under the open economy equilibrium
characterized in Definition 1, a vector of exogenous shocks to market size faced by domestic firms,
d log S, generate the following effects on the vector of domestic producer price indices d logP:

d logP � diag
(

1
σ − 1

) (
I −ΩSdiag(λM

u ) +Ψ
(
I −ΩD )−1 diag(λcpt)

)−1
×

Ψ
(
I −ΩD )−1 d log S, (13)

where Ψ is a J × J is an inverse matrix of cross-industry supply elasticities Υ for a fictitious
‘average’ firm:

[Ψ] jk ≡ σ j(1 − ς j)[Υ−1] jk − 1 j�k ,

[Υ] jk ≡
∑

m

(ρm − θm) λ̄ jm µ̄ jmk + 1 j�k

∑
m

θm λ̄ jm , ∀ j, k ∈ J ,

where λ̄ and µ̄ are weighted averages over firm-level utilization and deployment shares:

(i) Deployment shares µ̄ jmk indicate the economy-wide propensity for capital of type m to be
deployed in industry k (relative to other industries k′) among firms that produce in j:

µ̄ jmk ≡
∫

E[X f j]λ f jm∫
E[X f j]λ f jm dG(ξ)

µ f mk dG(ξ),
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(ii) Utilization shares λ̄ jm indicate the aggregate contribution to industry j of capital generated
by input m (relative to other capital inputs m′):

λ̄ jm ≡
∫

E[X f j]∫
E[X f j]dG(ξ)

λ f jm dG(ξ),

I is the identity matrix, and ΩS, ΩD are matrices containing external input-to-output coefficients
that depend on the share of industry k gross output on production inputs from industry j, γk j :

[ΩS] jk ≡ β jk
σ j

σk − 1 , [ΩD] jk ≡ λX
u j(1 − λ

X
j,F)

βk jXk∑
k′∈J βk′ jXk′

,

λX
j,F is the share of final use among all consumption in industry j, λX

dj is the share of the home
country’s sales going to d, λM

dj is the share of country d’s consumption originating from the home

country, and λcpt
j measures the potential for home-country firms to gain market share from foreign

competitors in each market:
λ

cpt
j ≡

∑
d∈{u ,DF}

λX
dj(1 − λ

M
dj ).

Equation (13) highlights three forces behind the equilibrium impact of demand shocks
on industry PPI. First, input-output linkages transmit changes in the output of any one
industry into changes in demand for another (through ΩD), and transmit changes in
the price index of any one industry into cost shocks in another (through ΩS). Second,
the open-economy market-stealing term (λcpt

j ) measures whether changes in producer
prices allow domestic firms to win market share against foreign producers. Third, joint
production within the firm delivers a matrix of aggregate cross-price elasticities of supply
(Ψ), channeling profit opportunities in one industry into capital accumulation in another.

While the first two forces are familiar, this third channel—joint production—is new.
The joint production matrixΨ encodes the role of input scalability and mutability behind
the supply-side response of prices to output. Thismechanism exists irrespective of general
equilibrium factor price and input price changes (such as those from Heckscher-Ohlin
models or input-output linkages).

For intuition on the role of the joint production matrix,Ψ, consider a simple economy
in autarky (λcpt

j � 0) without production input-output linkages (ΩP
� ΩR

� 0). With the
first two channels shut down, the impact of demand shocks (equation 13) reduces to

diag(σ − 1)d logP �Ψd log S,
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where the the off-diagonal elements ofΨ are zero if and only if
∑

m(ρm − θm)λ̄ jm µ̄ jmk � 0
for all pairs of industries j, k. The same two conditions that cause production to be
independent across industries within the firm (discussed in Section 2.5) also shut down
aggregate spillovers. This occurs if either (i) each industry relies on a different set of
capital inputs (so that λ̄ jm µ̄ jmk � 0), or (ii) scalability and mutability forces lie on a knife’s
edge (so ρm � θm ∀m) that causes perfect offset.

The knife’s-edge case of independent production across industries nests thepredictions
of most macro models. When Ψ is active only along the main diagonal, the elasticity of
the industry price index responds only to own-industry demand shocks, so that in each
industry j:

d logPj �
1

σ j − 1

(
σ j(1 − ς j)∑

m λ̄ jmρm
− 1

)
d log S j .

This elasticity, boundedbetween (− 1
σ j−1 , 1), reflects the strengthof industry-level economies

of scale. It is mediated by the degree of returns to scale in capital inputs, ρm , and produc-
tion inputs, γj . Together, they generate industry supply curves that are either downward
sloping, flat, or upward sloping, nesting predictions in recent models with variable own-
industry returns to scale (Kucheryavyy et al., 2019; Bartelme et al., 2019).

Two limit cases are worth pointing out. As ρm → ∞ for all m, the industry-level
scale elasticity (1/(σ j − 1)) is equivalent to that in a multi-industry Krugman (1980) model
with industry-specific free entry. The strength of internal returns to scale in production
approaches 1 +

1
σ j−1 and is equivalent to the gains from variety 1

σ j−1 achieved by outside
entrants in a constant-internal-returns Krugman model.43

Conversely, as ρm approaches the other limit of 1, capital inputs have no impact on
production. Firms respond tomarket size shifters only by adjusting their use of production
inputs, l f j . The production input returns to scale γj thus shapes the response of the price
index to market size shifters. If there are constant returns to scale behind production,
γj � 1 and the entire joint production matrix shuts down, so that Ψ � 0, indicating an
absence of both economies of scope and scale. Intuitively, aggregate industry supply
curves are flat so that demand shifters do not move prices.

4.2 Quantifying the Impact of Joint Production

I calibrate remaining parameters of the model to the US economy in 2017 and quantify
aggregate returns to scale and scope from joint production. I model the US economy

43Assumption 2 limits the elasticity of output to accumulated capital at σ j−1
σ j
− γj so that the internal

returns to scale cannot exceed the curvature of demand.
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under trade with two foreign partners: China (singled out for the purposes of tariff
counterfactuals), and a rest-of-the-world composite.

In this model of monopolistic competition, the CES demand elasticity (σ j) affects the
response of industry price indices to demand shocks. I calibrate σ j � 5 for all industries
j in the following quantitative exercises and explore sensitivity of results to alternative
calibrations of σ j in the Appendix.44 I calibrate production input expenditure shares, β jk ,
to match those observed in the I/O table under the assumption that the production input
composite is a Cobb-Douglas bundle over inputs. Quantitative Appendix C.6 provides
more details on the calibration of other parameters and model objects (e.g. exogenous
foreign price indices) using aggregated industry-level production and trade data for the
US in 2017.

I use the analytical propagation matrix in equation (13) to decompose the impact of
a proportional increase in foreign market size (across all industries) on the US manufac-
turing PPI.45 This is computed as a weighted average of industry-level producer price
responses, with weights equal to current output shares across industries, λX

j :

d log PPI �
∑
j∈J

λX
j d logPj .

The net impact of foreign demand shocks on themanufacturing PPI can be decomposed by
splitting up the matrix in equation (13) into (i) diagonal elements, representing the direct
effect (of a shock in industry k on prices in the same industry k) versus (ii) off-diagonal
elements, representing spillovers (a shock in k on prices in j).

Figure 6 illustrates results from performing the decomposition above under four sce-
narios, labelled (a)-(d). To impose appropriate units on the exercise, in each scenario I
scale the price index change by the total response in gross output and multiply by -1,
so that the sum over direct effects and spillovers yields the total elasticity of the inverse
PPI to gross output. A positive elasticity indicates the presence of aggregate returns to
scale or scope—prices decline with market size. The accompanying numbers (along with
a companion decomposition for the response of gross output to foreign shocks) are given

44I don’t estimate σ j in this paper, and nor does identification of production-side elasticities in Section
3 depend on σ j . Given Assumptions 1 and 2, estimation of input scalability and mutability depends on
ς j � γj(σ j − 1)/σ j , which is a function of both the demand elasticity σ j and returns to scale in production
inputs γj . BEAdata allow identification of ς j but not σ j separately from γj . Calibrating σ j to a commonvalue
across industries is a reasonable benchmark for my counterfactuals because it ensures that the asymmetric
industry results are not driven by differences in demand substitutability.

45The term d log S refers to a unit-elasticity demand shifter for US producers. To scale a foreign shock
d log Ȳdj into a unit-elasticity impact I use d log S � λX

dj d log Ȳdj as outlined in the proof the Proposition 3.
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Figure 6: Elasticity of the Inverse PPI with respect to Gross Output

Notes: This figure decomposes the total elasticity of the US manufacturing PPI with respect to gross man-
ufacturing output (induced by a proportional increase in foreign demand) into (i) a direct, own-industry
effect (green bar), (ii) spillovers that accrue due to scope economies (orange bar) and (iii) spillovers that
accrue due to input-output linkages (blue bar). This decomposition is performed under four different sce-
narios, (a)-(d), corresponding to different underlying assumptions internal joint production and external
input-output links in the economy. For more details on the four scenarios, see the main text. Appendix
Table 13 presents separately the responses of productivity and output used to compute these elasticities.

in Appendix Table 13.
Scenarios (a) and (b) treat the production input composite as labor value-added, while

(c) and (d) feature input-output linkages among manufacturing production inputs. Sce-
nario (a) assumes that an analyst has data only on own-industry price-elasticities of supply,
(e.g. through estimating returns to scale using data on single-industry firms). In this sce-
nario, because the off-diagonal elements ofΥ are zero, the only impact of foreign shocks on
the economy are direct, own-industry responses (driven by internal economies of scale),
depicted by the green bar in the figure.

Scenario (b), the benchmark case, incorporates the effect of joint production (so that all
elements of Υ, and thus its inverse Ψ, are potentially non-zero). The orange bar depicts
price index responses accruing due to internal cross-industry spillovers (economies of
scope). On net, scope economies generate an elasticity of producer prices to output of
-0.04 and account for 20% of the total elasticity of the producer price index to gross
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output.46
Scenarios (c) and (d) of Figure 6mirror the exercise in (a) and (b) but under a calibration

featuring production input-output linkages across industries. Scenario (c) depicts these
price responses in the presence of only own-industry returns to scale and external I/O
linkages. Input-output linkages induce large propagation effects due to the resulting
circular structure of production, depicted by the relative size of the blue bar. The total
response of gross output is much higher under such a world. Because increased scale
induces lower prices in each industry, the total response of the price index is now much
greater, with a larger proportion explained by spillovers relative to the direct effects.

Finally, in scenario (d), I combine the effects of joint production (Ψ) with input-output
linkages (Ω). I find that internal production spillovers within the firm are quantitatively
important not only in the setting without I/O links (comparing scenarios (a) and (b)) but
also in the setting with external linkages (comparing scenarios (c) and (d)). Allowing for
internal production spillovers more than doubles the total elasticity of the price index,
almost all of which accrues due to cross-industry spillovers.

In addition to the large cross-industry responses on average, I find significant hetero-
geneity in the strength of production spillovers across industries. Knowledge-intensive
industries are stronger transmitters as well as recipients. I decompose, for each industry,
the impact of a foreign demand shock on aggregate PPI into (i) an own-industry price
response and (ii) net price responses in other industries. Figure 7 plots the net cross-
industry response as a share of the total PPI impact across the range of industries under
scenario (b) (where economies of scale and scope are the only forces at play). This share
ranges from 0.71 for totalizing fluid meter and counting device manufacturing to -0.06 for
flavoring syrup.47 Table 14 in the Quantitative Appendix presents a list of top and bottom
industries.

Finally, I explore the sensitivity of results to alternative values of σ j in Quantitative
Appendix C.7.2. The key finding that spillovers due to joint production generates an
equilibrium elasticity of PPI to gross output of -0.04 is insensitive across typical estimates
of σ in the range of 3 to 10. I also allow σ j to vary across industries by calibrating σ j to
match typical estimates of industry-level direct returns to scale or profit shares. Across
both these calibrations, cross-price elasticities of supply due to joint production account
for roughly 20 percent of the total price response.

46The direct effect (green bar) is slightly diluted owing to a higher response of gross output (the scaling
on the denominator).

47Interestingly, flavoring syrup is the only industry in which negative spillovers (owing to residual capital
inputs being less scalable andmutable) quantitatively overwhelm positive spillovers, causing a net negative
price response in the event of a demand shock.
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Figure 7: Knowledge-intensive Industries Drive Spillovers

Notes: This figure plots the net PPI spillover (as a share of the total PPI response) owing to an industry-level
foreign demand shock, by industry expenditure share on knowledge inputs. Theweighted-average spillover
is given by the dashed line in orange and the weighted-average industry expenditure share is given by the
dashed line in grey. Each circle represents a NAICS industry in proportion to its size. The computations
are performed under scenario (b). Table 14 in the Quantitative Appendix presents a list of top and bottom
industries. Overlaid in black text is the same statistic but aggregated to the level of broad 2-digit sectors. In
order from the highest to lowest net spillovers, these sectors are: Computers, Machinery, Other, Chemicals,
Electrical Equipment, Metals, Minerals, Textiles, Transportation Equipment, Plastic, Paper, Wood, Coke,
and Food.
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Table 6: Effects on the US Economy from US Tariffs on Chinese Imports

(1) (2) (3)
Model Neoclassical CRS Scale + Scope Scale + Scope
Import tariffs on Chinese imports 20% Uniform 20% Uniform Alternative
Change (%)
Consumer Price Index (CPI) 1.12 0.80 0.38
Producer Price Index (PPI) 0 -0.46 -0.67

Imports from China -39.2 -40.5 -40.5
Imports from Rest of World 7.3 5.9 2.4
US Output 1.4 2.4 3.5
US Exports 0 2.1 2.8
Manufacturing Trade Deficit -11.5 -19.3 -28.3

As Share of Manufacturing Output (%)
NewManufacturing Profits 0 0.10 0.14
New Tariff Revenues 0.88 0.86 0.36

Notes: This table presents estimates of the impact of two different sets of tariffs on outcomes in the US economy,
under two different model settings calibrated to match US national industry-level aggregates (industry output
and trade patterns) in 2017. Column (1) presents results from a 20% increase in tariffs on Chinese imports across
all industries, under a neoclassical model with constant returns to scale and perfect competition. Column (2)
compares the impact of the same set of tariffs to my model with economies of scale and scope. Column (3)
presents results from alternative tariffs identified by my model that minimize the CPI impact while achieving
the same reduction in total imports from China. See Definition 1 for a characterization of the open economy
equilibrium and Appendix Section C.8.3 for details on how I compute alternative tariffs.

4.3 Revisiting the Impact of Trade Protection

Given the findings of large and heterogeneous spillovers across industries, I apply the
model to re-evaluate the impact of US tariffs on imports from China. In Table 6, I compute
the impact on economy-wide aggregates (down the rows) of different tariff schedules and
model environments (across the columns). I solve the system of equilibrium conditions
in Definition 1 before and after the (large) counterfactual policy shock using ‘exact hat
algebra’. Quantitative Appendix C.8 provides details on this procedure.48

The first two columns of Table 6 display the aggregate impact of uniform tariffs on
Chinese imports of 20% across all industries. In column (1), I calibrate a neoclassical trade
model with constant returns to scale and perfect competition to the same US data in 2017,
and compute the counterfactual price effects due to tariff policy. Under this benchmark, I

48To isolate the impact of mymechanism, I compute these results without taking into account production
input-output linkages. The underlying economy corresponds to benchmark scenario (b) in Figure 13. See
the Appendix Table 16 for results under input-output linkages and a discussion.
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find that the CPI rises by 1.12% due to Chinese imports becoming more expensive.49
In comparison, column (2) applies my estimates of joint production and the full non-

linear structure of the model to compute aggregate outcomes arising from the same tariff
policy. Domestic US firms now benefit from reduced import competition, and prices of
US goods fall not only in industries that are directly protected, but also in industries
that are jointly produced. These endogenous responses of domestic prices (due to both
scale and scope economies) substantially mitigate the price impact of import tariffs. The
domestic PPI falls by 0.46%, lowering the overall rise in the CPI from 1.12% to 0.8%. Other
margins of the US economy also improve due to increased competitiveness of US goods:
exports go up, the deficit shrinks, and import substitution towards other countries is less
pronounced.

Are there other tariff implementations that lower imports from China by the same
amount (41%) at the cost of an even smaller rise in the CPI? While the optimal tariff
structure is difficult to solve for in this non-linear environment, I use a similar local
propagation matrix to that in equation (13) to compute the contribution of import tariffs,
by industry, towards reducing Chinese imports (a ‘benefit’) and increasing the CPI (a
‘cost’). I start with a baseline vector of tariff values that are biased towards industries with
higher benefits per unit cost, and scale up the tariffs proportionately so that they generate
the same counterfactual decline in imports from China.

The more biased is import protection towards knowledge-intensive industries, the
smaller is the CPI-cost of reducing Chinese imports by 41%. When the degree of bias is
such that tariffs on the most heavily affected industry reach 300%, the CPI rises by a mere
0.38%. Almost half of this reduction occurs as a result of a stronger decline in domestic
producer prices, indicated by a greater reduction in the PPI of 0.67%. Column (3) of Table
6 reports the impact on US aggregate economic outcomes from this policy. Due to US
producers lowering their prices (from increased capital accumulation), exports rise by
2.8%, the manufacturing trade deficit shrinks by 28.3%, and increased manufacturing net
profits account for 0.14% of initial gross output.

Conclusion

This paper provides reduced-form evidence of joint production by assembling panel data
on the industry-level sales of all USmanufacturing firms and leveraging exogenous shocks

49The overall impact on welfare suggested by the results in column (1) is relatively low (especially after
taking into account tariff revenue) and consistent with estimates in Amiti et al. (2019) and Fajgelbaum et al.
(2019).
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to their industry-specific market size. I find that a demand shock in one industry of a firm
increases its sales in another the more that the pair of industries share knowledge inputs.
I rationalize these results by developing a model of joint production under which inputs
differ in their degree of scalability and mutability within the firm. I provide structural
estimates of scale and mutability parameters and find that knowledge inputs generate
economies of scope within firms: negative cross-industry price elasticities of supply.

Joint production generates a new and quantitatively important set of cross-industry
linkages. The aggregate response of producer prices to market size would be roughly 20
percent lower if scope economies were not taken into account. Economies of scope are
concentrated among industries that utilize more knowledge inputs, suggesting that these
industries shouldbemore closely scrutinized inquantitative studies andpolicy evaluation.
In light of these findings, I re-examine the consequences of US tariffs on imports from
China. I identify alternative tariff policies that more than halve the adverse CPI effects by
biasing protection towards knowledge-intensive industries that feature stronger internal
economies of scale and scope.

The results in this paper openupbothmicro andmacro avenues for further research. At
amicro level, the stochastic joint production framework can be applied to other imperfectly
competitive settings featuring strategic interactions among firms. Richer firm-level data
on research expenditures, patenting, levels of IT capital, and worker occupations could be
used to understand how internal and external knowledge spillovers interact. The behavior
of firms in the model also micro-found the endogenous accumulation of different types of
capital across industries and countries. At a macro level, these results would improve our
understanding of the origins, evolution, and correlation of comparative advantage across
countries, as well as the welfare and productivity consequences of trade liberalization.
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A Data Appendix

A.1 Data Construction and Details
Firms, Plants, and Products. I assemble data from the Economic Censuses (EC), the Longitudinal
Business Database (LBD), and the Longitudinal Firm Trade Transactions Database (LFTTD) to
construct a portrait of firm activity over the years 1997 to 2012. The Censuses are conducted
quinquennially in years endingwith ‘2’ and ‘7’. Data onproduct shipmentsmadeby establishments
come from the product trailer (PT) files which are attached to the Census of Manufactures (CMF).
These trailer files contain responses of establishments that are sent a CMF ‘Long Form’. The long
form is sent to all establishments belonging to multi-establishments firms as well as a sample
of single-establishment firms. The long form elicits shipments made by the establishment at a
disaggregated level (varying from 6 to 10 digit NAICS).50

Using firm identifiers in the LBD, I match establishments to their parent firms and aggregate
industry-level shipments from the level of the plant to the level of the firm. The firm identifier
in the LBD comes from information the census collects on the span of control of firms in the
Company Organization Survey and from tax identifier and plant identifier information in the
Business Register. An establishment is a physical location where business activity occurs. The
firm is defined (by the census) as the highest level entity that controls more than 50% of each of
the establishments we assign to the firm. I drop plants that are administrative records (for which
sales data are imputed).

External Sales. The CMF contains data on the shipments of a plant that go towards other
plants within the same firm (i.e. inter-plant, intra-firm). However, this data is not broken down at
the product-line level. For plants that produce in multiple industries, I apportion this inter-plant
shipment data into industry-level intra-firm shipments using shares taken from the plant’s total
sales across industries. I then define the external sales of a firm in each industry as its total sales
in that industry minus its intra-firm shipments. I drop external sales computed in this way in any
industries of the firm that (i) account for less than 0.5% of firm-wide external shipments and (ii)
are never the main produced industry of any plant the firm owns. This is conservative and allows
product shipments in very small industries of the firm to be entirely intra-firm. This also prevents
the spurious adding / dropping of products simply because of changes to the PT forms over the
years.

Firm Trade Data. The LFTTD contains the value of all import and export transactions, by

50This process likely underestimates the significance of multi-product activity in the US economy, for
two reasons. First, the long-form elicits questions about product sales over a pre-specified list of products
(specific to the plant’s classified industry). Although there is space for the firm to report shipments in
products not covered by that pre-specified list, in practice firms rarely do. Second, the long-forms do
not cover all single-establishment firms in the economy. A single-establishment firm could be selling in
multiple industries but I will not see the breakdown of its sales over these industries if the firmwas not sent
a long-form.
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trading country and by HS10 product, that each firm entity (a set of EIN tax codes) is a counter-
party to. The CMF also contains data on plant-level shipments that are ultimately destined for
export markets (whether directly or indirectly through an intermediary). If the plant is a multi-
industry plant, I apportion this plant-level shipment across the plant’s industries using product
trailer product shipment shares. I use both LFTTD andCMF sources of data on exports to construct
the export demand shock, detailed below. Data on firm exports and imports from Table 1 come
from the LFTTD.

Country-level Trade Data. I use data from BACI and Comtrade (bilateral country-level trade
flows at the HS6 level) to generate the five-year growth rates in imports of a destination n in
product h used in the analysis, ∆ log IMPnht .

Knowledge Inputs. I use BEA input-output tables from 1997 for information on the use of
inputs by industry. Table 7 lists the input industries from BEA input-output and capital flow
tables that I classify as knowledge inputs. These correspond to NAICS sectors 55, 54, 51, and 533.
Although results are robust to including finance, insurance, real estate, and other rental leasing
(NAICS 52, 531, and 532), I do not include them in my list of knowledge inputs because of the
separate way that financial inputs affect businesses compared to real inputs.51

The input-output tables record expenses on inputs whose value fully depreciates within one
year (in the accounting sense). Because some intangible assets also have arbitrarydepreciation rates
and there are arbitrary rules around which inputs are expensed versus capitalized, I incorporate
data from the capital flow tables on capitalized investments made by firms in manufacturing
industries on knowledge input industries (for example, a shoemaker investing in software capital).
I count both capitalized investments and expensed investments as knowledge input expenditures.
The last three columns of Table 7 show aggregate expenditures on these input industries. I give
statistics on the weighted mean (total manufacturing) expenditure share, as well as the 25th and
75th percentiles across industries.

In practice, it makes no difference to the results if I exclude capitalized expenditures from
the capital flow tables. Most intangible inputs circa 1997 were still expensed under the national
accounts. Only four input industries had capitalized investments: software publishers (511200),
architectural, engineering, and related services (541300), custom computer programming services
(541511), and computer systems design services (541512). Total capitalized investments in these
industries by the manufacturing sector only amount to 0.64% of gross manufacturing output. I do
not use input-output table data on knowledge input expenditures after 1997 because of subsequent
changes to accounting rules that generate a lot of time variation in the data series.

Industry Definition. I construct a unified industry nomenclature, BEAX, that is time-invariant

51My model does not speak to the various mechanisms explored in the corporate finance literature, such
as internal capital markets (Stein, 1997) or corporate socialism (Scharfstein and Stein, 2000). Instead, I soak
up these effects under estimate properties of residual capital inputs in my quantitative framework, and
under the ∆ log SOTHER,SYM

f j control variable in the reduced-form.
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Table 7: Definition of Knowledge Inputs and their Use in Manufacturing in 1997

Share of Gross Output (%)
m ∈ MKLG Description Mean 25th pctile 75th pctile

550000 Management of companies and enterprises 3.54 2.60 4.94

541700 Scientific research and development services 0.62 0.25 0.96
541300 Architectural, engineering, and related services† 0.62 0.31 0.96
5419A0 All other professional, scientific, and technical services 0.61 0.61 0.63
541511 Custom computer programming services† 0.58 0.21 0.86
541800 Advertising, public relations, and related services 0.48 0.14 0.62
541610 Management consulting services 0.28 0.28 0.30
541100 Legal services 0.28 0.09 0.30
541200 Accounting, tax prep., bookkeeping, & payroll services 0.15 0.08 0.21
541400 Specialized design services 0.09 0.01 0.02
541512 Computer systems design services† 0.07 0.02 0.06
54151A Other computer related services 0.04 0.02 0.04
5416A0 Environmental and other technical consulting services 0.04 0.01 0.02
541940 Veterinary services 0.00 0.00 0.00
541920 Photographic services 0.00 0.00 0.00

533000 Lessors of nonfinancial intangible assets 0.69 0.06 0.34

5111A0 Wired telecommunications carriers 0.34 0.17 0.37
511200 Software publishers† 0.33 0.05 0.19
518200 Data processing, hosting, and related services 0.20 0.17 0.26
512100 Motion picture and video industries 0.03 0.00 0.03
512200 Sound recording industries 0.00 0.00 0.00

Total Share of Expenditures on Knowledge Inputs 9.01 6.38 11.48

Notes: Mean refers to the weighted average across all 206 BEAX manufacturing industries, with industry gross output
as weights. 25th and 75th pctile refers to expenditure shares of the corresponding percentiles (unweighted) across the
206 manufacturing industries. Codes in the first column refer to BEAX codes that are hand-developed; they roughly
correspond to codes available in BEA I/O tables but are aggregated to ensure consistency over time.
Source: BEA Input-Output & Capital Flow Tables, 1997.
† Indicates industrieswhere data on capitalized investments from the capital flow tables are used to compute expenditures.
This makes up only 0.64% of gross manufacturing output.
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over the period 1997 and 2012 and concordable with HS, NAICS, and BEA industry codes in each
year. There are 206 BEAX industries in manufacturing. I use the HS-NAICS concordance in US
Census Bureau data provided by Schott (2008) and Pierce and Schott (2012) to convert import and
export HS codes (at the 10-digit and 6-digit levels) in each year to NAICS. I use the concordances
provided by US Census Bureau and BEA to go between NAICS codes and BEA codes in each year.
I use an iterative algorithm to aggregate over m:m splits over years and in each cross section so
that in any given year, each NAICS code and HS10 code is entirely contained within a BEAX code.

A.2 The Non-Manufacturing Sector
Statistics shown in Table 1 are limited to the manufacturing sector since this paper limits attention
to economies of scope in manufacturing. Here I briefly extend the reported statistics on multi-
industry firm activity using a different classification of multi-industry firms: whether their sales
span two or more industries in any sector. In the non-manufacturing sector, I find that 52%
of sales come from multi-industry firms in 1997, while this number rises to 57% in 2012. The
main difference compared to manufacturing is the long tail of small firms in non-manufacturing
industries. The share of firms that are multi-industry in non-manufacturing is only 1% (compared
to 20% in manufacturing). However, the lack of comparable product-trailer data for the non-
manufacturing sector makes an apples-to-apples comparison difficult. In the non-manufacturing
sector, industry variation in the data comes exclusively from the span of plants owned by a firm
and the extent to which these plant classifications differ.

A.3 Export Demand Shocks
I leverage both the LFTTD and CMF sources of data on firm-industry exports to construct demand
shocks, ∆ log S f jt . First, among LFTTD data, I compute export shares of each industry of each
firm across destinations n and HS6 products h. I exclude destination-product markets whenever
the firm’s exports in those markets exceed 10% of the market’s imports from the rest of the world.
I use these shares as s f nh | f j,t−1 in the analysis. Data on export intensity, s∗f j,t−1, come from the
CMF export shipment response variable. This is a firm-industry level variable as described in
the preceding section. If the firm has no reported exports in an industry by manufacturing
plants producing in that industry, it is likely that customs data is an instance of carry-along trade,
made by the firm’s wholesale / retail arm. These demand shocks are unlikely to affect the firm’s
manufacturing sales (reported by its plants) any more than other firms in the industry. Export
intensity helps to discipline the customs-derived export demand shocks. I also set export intensity
to zero for instances where carry-along trade of the firm (customs exports less census exports) in an
industry exceeds its total external shipments in the CMF. After purging these edge cases, I am left
with two measures of export intensity: (i) census exports divided by census sales in an industry,
and (ii) customs exports divided by census sales in an industry. I take the average of these two
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Table 8: Summary Statistics on Key Regression Sample

Statistics by firm-industry: Variable Mean Std. Dev.
Sales Growth ∆ log X f jt 0.15 0.99
Has Export Demand Shock? 0.68 0.47
Export Intensity s∗f j,t−1 0.06 0.10
Own-industry Demand Shock ∆ log S f jt 0.028 0.082
Other-industry Shock, sales-weighted ∆ log SOTHER,SYM

f jt 0.025 0.063
Other-Industry Shock, knowledge-expenditure-weighted ∆ log SOTHER,KLG

f jt 0.002 0.007

Initial Period Sales (millions) X f j,t−1 165 1225
Initial Period Employment 522 2245

Other Statistics Value
Number of firms in 1997-2002 5000
Number of firms in 2002-2007 4700
Share of U.S. manuf. sales accounted for by sample 0.51
Share of U.S. manuf. employment accounted for by sample 0.37

Notes: This table reports sample statistics for the particular sample of multi-industry firms and industries used
in the reduced-form regression (Table 2). Number of observations are rounded for disclosure avoidance. The
selection criteria is any firm-industry with continuing sales over a 5-year period, and belonging to a firm with
at least one industry exporting (so that at least one out of the own-industry and cross-industry demand shock
variables will be non-zero).

measures as my measure of s∗f j,t−1.

A.4 Regression Analysis

A.4.1 Summary Statistics

Table 8 displays summary statistics on common variables that appear in regression Table 2 of the
main text. The regression sample consists of all continuing firm-industries (across 5-year periods)
of firms that have at least one industry with a non-zero export demand shock.

A.4.2 Export Demand Shock

Before proceeding to the main test of spillovers, I verify that demand shifters are indeed able to
shift firm sales in the same industry by running the following regression for only the sample of
firm-industries that have non-zero own-industry export demand shocks:

∆ log X f jt � α∆ log S f jt + Controls jt(s∗f j,t−1) + FE jt + ε f jt ,

where Controls jt(s∗f j,t−1) refers to various ways of controlling for the export intensity scaling
variable, to make sure that variation in the export demand shock is not driven by firms with
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Table 9: Relevance of Export Demand Shocks for Predicting Sales Growth

∆ log X f jt (1) (2) (3) (4)

∆ log S f jt 0.59*** 0.36*** 0.34*** 0.32***
(0.10) (0.12) (0.11) (0.11)

Industry-year-FE X X X X
s∗f j,t−1× year-FE X X

s∗f j,t−1× Industry-year-FE X

Control for pre-period sales, log X f j,t−1 X X

Observations 14,500 14,500 14,500 14,500
R2 0.08 0.08 0.12 0.15

Notes: This table displays responses of firm-industry sales to demand shocks the firm receives in the same
industry, in 5-year differences over the period 1997-2007. Standard errors in parentheses are clustered at the
firm level. Number of observations are rounded for disclosure avoidance. Observations are at the firm-industry-
year level, for continuing industries of all multi-industry firms that have an export demand shock in that same
industry. The control s∗f j,t−1 is the firm’s export intensity (exports over sales) in industry j in the initial census
year.

different export intensities being on different growth trends. Results are presented in Table 9.
Across all three columns (that vary in terms of the control for export intensity used), the coefficient
on the shock variable is positive and ranges from 0.32 to 0.59. Without controls for export intensity
(column 1), the impact of the demand shock is statistically higher, consistent with selection on
export intensity.52

A.4.3 Control Variables

The regression results in Table 2 are robust to including an exhaustive set of controls, as described
in the main text. I define the pre-period size of the firm as the log of the sum of sales over all
the firm’s industries. The pre-period industry size is the log of the firm’s sales in that industry. I
define export status as a dummy variable equal to 1 if the firm has a non-zero export intensity in
that industry, s∗jt > 0.

In column (1) of Table 10, I re-estimate specification (5) of Table 2 but including all the controls
discussed in the body of the text. I find that—aside from an increase in R2—there are no changes
to the magnitude or significance of spillover coefficients.

52I also run a placebo test where I assign firms in a given industry j a random ∆SHK f jt drawn from the
empirical distribution of shocks received by all firms active in industry j. The placebo tests return false
positives in column (1) but not columns (2) and (3). This suggests that linear controls for export intensity
control adequately for selection on export intensity.
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Table 10: Cross-Industry Spillovers within the Firm: Additional Robustness Specifications

Sales growth, ∆ log X f jt (1) (2) (3) (4)

Own-industry shock 0.51*** 0.47*** 0.47***
∆ log S f jt (0.10) (0.09) (0.09)

Cross-industry shocks
(i) Knowledge-based spillovers 8.26*** 6.54*** 7.02*** 8.14***
∆ log SOTHER,KLG

f jt (2.22) (2.08) (2.11) (2.22)

(ii) Symmetric spillovers -0.81*** -0.48
∆ log SOTHER,SYM

f jt (0.26) (0.39)

(iii) Physical-input spillovers -0.75*** -0.86*** -0.44
∆ log SOTHER,PHY

f jt (0.26) (0.26) (0.44)

Industry-year-FE X X X X
Full Set of Controls X
Observations 21,500 21,500 21,500 21,500
R2 0.12 0.05 0.06 0.06

Notes: This table displays additional specifications using the same sample of firms as regression Table 2.
Standard errors are clustered at the firm level. Number of observations rounded for disclosure avoidance.
Observations are at the firm-industry-year level, for continuing observations of a sample of multi-industry
firms with at least one industry directly exporting. The full set of control variables include: initial period
firm size, firm-industry size, export status, export intensity, aswell as controls for the shares in the functional
forms (SYM and KLG) used to collapse shocks in other industries, and the interaction of these shares with
other initial-period firm-industry variables.
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A.4.4 Other Input Linkages

The remaining columns (2)-(4) of Table 10 estimates a variant of the main regression equation (1)
where instead of using sales weights to form ∆ log SOTHER,SYM

f jt , I focus only on input proximity
and separate out knowledge inputs from the remaining inputs in the BEA I/O tables. I call the
remaining set of inputs physical, denoted by PHY, and construct ∆ log SOTHER,PHY

f jt in the same
way as ∆ log SOTHER,KLG

f jt . Column (2) shows that they pull in opposite directions within the firm,
strongly suggestive that industry spillovers differ in the knowledge input dimension. Column (3)
adds the own-industry shock to the regression, and column (4) includes both ∆ log SOTHER,PHY

f jt

and ∆ log SOTHER,SYM
f jt .

To understand whether there are any discernible inputs under the PHY input category that
drives negative spillovers, I conduct a placebo exercise based on column (5) of regression Table
10 where I use different proximity measures constructed based on bilateral similarity in use over
different sets of inputs (in lieu of knowledge inputs, KLG). Table 11 displays the regression table
counterpart to coefficients shown in Figure 2. The numbers next to the description in parentheses
display the BEAX subroot (1, 2 or 3 digits) among 6-digit BEAX industry inputs that make up
the sector. Taxes, government sector inputs, and the two types of value-added are specific BEA
categories that have no corresponding numeric BEAX code.

A.4.5 Firm-level Respones

I construct weights, η f k ,t , in the firm-level regression equation (3) for the various outcome cate-
gories as follows:

η f kt �
βk ,yX f kt∑

k′ βk′,yX f k′t
,

where X f kt is firm sales in industry k and βk ,y takes on the following values depending on the
outcome variable y:

(i) Purchased professional services: βk ,y � βk ,INT , the share of gross output by industry k on
knowledge inputs.

(ii) Sales: βk ,y � 1 (so η are simply sales shares).

(iii) Capex: βk ,y � βk ,CAP , the share of gross output by industry k on capital value added.

(iv) Payroll: βk ,y � βk ,LAB, the share of gross output by industry k on labor value added.

Data on purchased professional services at the firm level come from aggregating responses of
plants of the firm to the following ASM survey expense line items: expenses on legal, accounting,
management, communication, advertising, and computer software and data processing services.
Firms that do not have plants respond to these questions in the ASM and firms that have sales
outside of the manufacturing sector account for larger than 5% of overall sales are dropped for
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this particular regression. Data on firm-wide capex come from summing up plant-level capital
expenditures, and data on payroll come from summing up plant-level production worker payroll.

A.4.6 Threats to Identification

Related to the discussion on threats to identification in Section 1.4, I directly test and reject the
hypothesis that the import growth patterns across industries within a destination are positively
correlated among knowledge-input intensive industries. I aggregate imports of each destination
to the industry level (across products), IMP US

nk ,t−1, and construct spillover functions corresponding
to the same functional forms used in the main firm-industry regression table:

∆ log IMP∼US,OTHER,BLK
n jt ≡

∑
k, j

∑
m∈MBLK

β jm

(
βkm IMP∼US

nk ,t−1∑
k, j βkm IMP∼US

nk ,t−1

)
∆ log IMP∼US

nkt ,

for BLK � {KLG, PHY} to separate out knowledge inputs from remaining (physical) inputs in the
input-output tables. I then run the following regression, at the level of destination-industries, over
the same time period (in 5-year differences):

∆ log IMP∼US
n jt � ψPHY∆ log IMP∼US,OTHER,PHY

n jt + ψKLG∆ log IMP∼US,OTHER,KLG
n jt + FE jt + FEnt .

I do not find that ψINT is positive, either with or without destination-year fixed effects.

A.4.7 Vertical Explanations

There are four general reasons a demand shock in industry k may propagate within a firm to
generate increased sales in industry j: (i) j supplies k, (ii) k supplies j, (iii) k , j use similar inputs, and
(iv) k , j are demand-complementary and have similar buyers. My focus is on mechanism (iii). The
discussion in the body of the paper (Section 1.4) rules out reason (iv), demand-complementarity.
The following points discuss the first two, vertical mechanisms.

(i) I use the external sales growth in industry j as the main sales outcome variable, so the
regressions pick up the firm’s change in external sales in industry j. It could still be true that
external sales growth is driven by productivity effects induced by intra-firm sales growth. I
check specifically whether intra-firm sales growth in j occurs in response to demand shocks
in k. I find that they do not respond (even among only the tiny fraction of j industries that
have any inter-plant shipments at all).

(ii) For this to occur there must first be an increase in internal shipments in the shocked industry
k. Then the story would be that increased quality of shipments (as measured by increased
internal sales) drives productivity growth in industry j. I use growth in inter-plant (intra-
firm) shipments as an outcome variable across the specifications in Table 9. I find that they do
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not respond (even among the tiny fraction of k industries that have any inter-plant shipments
at all).

A.4.8 Deflating

Even though the main regressions specifications all include industry-year fixed effects, whether
variables are nominal or deflated (with industry-deflators) could make a difference in terms of the
relative sizes of export shares and expenditure shares. All the reduced-form results are virtually
unchanged when the following variables are deflated with industry-level price deflators from the
NBER-CES manufacturing database: demand shocks (import growth at destinations), outcomes
(external shipments of a firm-industry), as well as ‘initial-period’ variables in the formulation of
weights, for example, behind the ∆ log SOTHER

f jt functions.
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B Theory Appendix
In this section I prove any claims and derive the expressions found in Propositions and Lemmas in
the main body of the paper. I also provide commentary on a few relevant extensions of the results
of the model.

B.1 Proof of Lemma 1: Option Value fromMutability and Scope
Combine the expression in Assumption 2 with the expression for firm-industry profits in equation
(5) to compute the expected impact on firm gross profits from the arrival of a piece of capital i of
type m:

∆ f m

Z
≡ E

[
max

j
α̃m jB jξ f j φ f jm ,i

]
,

where φ f jm ,i is an independent random draw from a Fréchet distribution. The expected impact is
the change in gross profits in the industry in which the capital (conditional on the match-specific
draws of φ f jm ,i in different industries) generates the highest improvement in profitability. The
remainder of this proof simply relies on properties of the Fréchet distribution popularized by
Eaton and Kortum (2002). I can re-express the profit contribution as:

∆ f m

Z
� E

[
max

j
φ̃ f jm ,i

]
,

where φ̃ f jm ,i is an independent random draw from a different Fréchet distribution that absorbs
the multiplicative shifters:

Pr(φ̃ f jm ,i ≤ x) � e−(α̃m j B jξ f j)θm x−θm
, ∀ j ∈ J ,

and it follows that

∆ f m

Z
�

©«
∑

j

(
α̃m jB jξ f j

)θmª®¬
1
θm

Γ(1 − 1/θm),

∆ f m �
©«
∑

j

δθm
f m j

ª®¬
1
θm

.

where Γ is the gamma function and δ f m j ≡ ξ f jαm jB jZ.

B.2 Proof of Lemma 2: The Firm’s Solution
In stage II, the firm decides its expenditures on production inputs given its accumulated capital,
{ϕ f j} j∈J . This problem is separable by industry. The solution to this under monopolistic compe-
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tition yields the expression for gross profits of the firm (sales less production input expenses) in
equation (5).

At thebeginningof stage I, thefirmdecides its expenditures on capital inputs. Throughout stage
I, the firm deploys each new capital opportunity to a chosen industry. Given the memorylessness
of capital deployment induced by Assumption 2, expected firm net profits Π f can be written as:

E[Π f ] � max
{ι f m}m∈M

E


∑

j

∑
m

B jξ f j α̃m j

A f m∑
i

φ f jm ,i1 f jm ,i

 −
∑

m

wι f m .

The first half of the expression denotes the expected gross profits of the firm given its how its
choices of capital inputs ι f m affect the Poisson arrival rate of capital A f m and its deployment
decisions 1 f jm ,i . The second half of the expression relates to the costs of capital inputs. I assume
that the firm can purchase capital inputs at constant unit costs w. (Any differences in unit prices
across types of capital inputs are absorbed by technology shifters α f m). Given the independence of
the Poisson and Fréchet distributions, this problem is additively separable, so that the deployment
of each capital that arrives is independent of past and future decisions.

More formally, the deployment decision 1 f jm ,i has the following expectational properties in-
herited from Fréchet (Section B.1):

Pr(1 f jm ,i � 1) � Pr( j � arg max
k∈J

φ̃ f km ,i)

�

δθm
f m j

∆
θm
f m

≡ µ f m j ,

where µ f m j are deployment probabilities for any given arrival of capital of type m and

E[α̃m jB jξ f jφ f jm ,i |1 f jm ,i � 1] � E
[
max

j
α̃m jB jξ f j φ f jm ,i

]
�
∆ f m

Z
,

by Lemma 1. Recalling that A f m is distributed independently with Poissonmean Z
(
ρm
ρm−1 ι f m

) ρm−1
ρm ,

expected firm net profits Π f can be re-written as

E[Π f ] � max
{ι f m}m∈M

∑
m

∑
j

E[A f m |ι f m]E[α̃m jB jξ f jφ f jm ,i |1 f jm ,i � 1]Pr(1 f jm ,i � 1) −
∑

m

wι f m .

� max
{ι f m}m∈M

∑
j

∑
m

(
ρm

ρm − 1 ι f m

) ρm−1
ρm

∆ f mµ f m j −
∑

m

wι f m .

� max
{ι f m}m∈M

∑
m

(
ρm

ρm − 1 ι f m

) ρm−1
ρm

∆ f m −
∑

m

wι f m ..
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This is a simple convex optimization problem separable across capital input types m, with solution
given by

ι f m �
ρm − 1
ρm

∆
ρm

f m w−ρm , ∀m ,

and thus net profits are equal to

E[Π f ] �
∑

m

∆
ρm

f m w1−ρm −
∑

m

ρm − 1
ρm

∆
ρm

f m w1−ρm

�

∑
m

1
ρm
∆
ρm

f m w1−ρm .

Likewise, expected gross profits in a single industry j are given by

E[π f j] �
∑

m

µ f m j∆
ρm

f m w1−ρm .

The probability that a firm is active in industry j, denoted χ f j � 1, is one minus the probability
that no capital is deployed to that industry. Since deployment of capital is independent across
opportunities, and the total arrival rate of capital of any type m is a Poisson process with rate A f m ,
the arrival of ideas deployed to industry j is also a Poisson process, with different rate A f mµ f m j .
The probability that no capital is deployed is thus the probability that there are no arrivals from
the joint Poisson processes of deployed capital to industry j over all capital types:

Pr(χ f j � 1) � 1 − exp

(∑
m

µ f m jA f m

)
� 1 − exp

(
−Z

∑
m

δθm
f m j∆

ρm−1−θm

f m w1−ρm

)
,

and is independent across industries. Similarly, an inactive firm is a firm with no capital arrive at
all. The probability that a firm is inactive is thus given by

Pr(χ f � 1) � 1 − exp

(∑
m

A f m

)
� 1 − exp

(
−Z

∑
m

∆
ρm−1
f m w1−ρm

)
.

B.3 Proof of Proposition 1: Spillovers within the Firm
Log-differentiating equation (8) with respect to shifters of firm profitability in industries k, holding
factor prices w constant, yields

d logE[X f j] � d logE[π f j]

�

∑
m

λ f jm

(
θm1k� j d log ξ f kBk + (ρm − θm)

∑
k

µ f mk d log ξ f kBk

)
,
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where µ f m j are capital deployment shares given in Lemma 2, and λ f jm denote utilization shares:
the share of gross profits of industry j attributable to capital contributions of type m:

λ f jm ≡
µ f m j∆

ρm

f m w1−ρm∑
m′ µ f m′ j∆

ρm′
f m′w

1−ρm′
.

B.4 Connecting Firm-level Elasticities in theModel and Reduced-Form
The firm-level cross-industry elasticity from Proposition 1 combines responses on both intensive
and extensive margins (E[X f j] includes the non-trivial probability of zero sales).53 But for suffi-
ciently large firms (high in ξ f ), all the responses load on the intensive margin. The intuition is
that the largest firms choose a level of capital expenditures so high to start with that the likelihood
of cross-industry shocks affecting the extensive margin vanishes. For example, a demand shock
for General Electric’s MRI machines might affect GE’s intensive margin sales of jet engines but
is unlikely to affect whether the company is active at all in the jet engine business. With a high
enough arrival rate, the expectation operator becomes exact thanks to the law of large numbers.54
The following Lemma clarifies this point and motivates the focus of the reduced-form regressions
on the intensive margin (given that the regression sample comprises large firms):

Lemma 3 (Intensive Margin Spillovers for Large Firms) For a firm with non-zero latent productivi-
ties ξ f j and ξ f k , cross-industry elasticities characterized by Proposition 1 load completely onto the intensive
margin as the average firm productivity ξ f become arbitrarily high:

lim
ξ f→∞

d logE[X f j]
d log ξ f kBk

�
d logE[X f j |X f j > 0]

d log ξ f kBk
.

As a corollary, the share of the cross-industry elasticity in Proposition 1 explained by extensive margin
changes within the firm ranges from 1 (for the lowest ξ firms) to 0 (for the highest ξ firms).

Proof. Separate the expected gross sales into intensive margin and extensive margins:

logE[X f j] � logE[X f j |X f j > 0] + log Pr(X f j > 0).

Differentiate the extensive margin:

d log Pr(X f j > 0)
d log ξ f kBk

�
exp(−Σ f j)Σ f j

1 − exp(−Σ f j)
∑

m

sm j
(
θm1k� j + (ρm − θm)µ f mk

)
,

53It is easy to log-differentiate equation (9) to derive purely extensive margin predictions and thus de-
compose the action.

54All the Frechet idiosyncratic errors wash out. This large firm limit also corresponds to the framework
pioneered in Tintelnot (2016) and Antràs et al. (2017), whereby outcomes are smoothed across a continuum
within the firm instead of being granular.
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where

sm j ≡
Zµ f m j∆

ρm−1
f m w1−ρm

Σ f j
,

and Σ f j ≡ Z
∑

m µ f m j∆
ρm−1
f m w1−ρm . Let ξ̄ f denote the average of the profitability shifters in two

industries of the firm j, k in which the firm has non-zero sales. The term to the right of the
∑

m in
the derivative of the extensive margin is bounded (weighted average of elasticities),

lim
ξ̄ f→∞

d log Pr(X f j > 0)
d log ξ f kBk

� lim
Σ f j→∞

exp(−Σ f j)Σ f j

1 − exp(−Σ f j)
� 0,

where the last equality makes use of L’hopital’s rule.

C Quantitative Appendix

C.1 Identification of Macro Variables
Conditional on micro parametersΘ, γ, I use the aggregate predictions of the parametrized model
to invert for macro variables: technology coefficients αm j , residual profits in each year, B jt , and the
technology index in the cost function, Zt .

First, to identify αm j from base period (t � 1) data on Mm j , I solve the second line of equation
(12) separately for each of the three types of knowledge capital types m ∈ MKLG. For each type
of knowledge input m, I invert a separate J-system of equations for a J vector of model variables
αm jB j,t�1Zt (grouped together) given data on capital expenditures of that type, {Mm j} j .

The mean of αm j across m for each j is isomorphic to a constant term in B j,t�1. Thus, I am free
to normalize the technology coefficient of the last capital input type αRES, j � 1. To find base period
B j,t�1, I subtract knowledge expenditures (the second line of equation 12 for all m ∈ MKLG) from
gross profits (the first line of equation 12) to yield

π j −
∑

m∈MKLG
ρKLG

ρKLG−1 Mm j

N
�

∫
ξ
δθ

RES

f ,RES, j∆
ρRES−θRES

f ,RES dG(ξ),

where the left-hand-side is data contained in BEA input-output tables, and the right-hand side
contains a J vector of unknowns B j,t�1Z (since αRES, j � 1) to be inverted.55 Note that this equation
imposes a non-negativity restriction which manifests as a lower bound on the value of ρKLG

55Note that no expenditure data is needed on the residual capital input category. The residual category
is set up to also absorb payments to latent factors (venture capital, sweat equity).
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according to the model:

π j >
∑

m

ρKLG

ρKLG − 1
Mm j , ∀ j

⇐⇒ (1 − ς j) >
ρKLG

ρKLG − 1

∑
m∈KLG

βm j , ∀ j

⇐⇒
ρKLG − 1
ρKLG > max

j

βKLG, j

1 − ς j
� max

j

βKLG, j

βKLG, j + βRES, j
,

for BEA expenditure shares βm j . In the data, this restriction corresponds roughly to imposing that
ρKLG > 3.

I use the values of B j,t�1Zt�1, and αm jB j,t�1Zt�1 to back out αm j . I hold αm j constant over all
three time periods, for lack of input-output expenditure data on knowledge inputs in subsequent
years.

To find future-period residual profits {B j,2 , B j,3} j (jointly with Zt), I invert for B jt Zt using the
first line of equation (12) with gross output data from that corresponding year and values of αm j

from the above two steps.
Finally, given the full set of {B jt Zt}t�1,2,3 and α, I can solve for Zt such that the share of

single-industry firms in the model matches 0.8 in the data:∫
ξ

∑
j

(
Pr(χ f jt � 1)∏k, j(1 − Pr(χ f kt � 1))

)
dG(ξ)∫

ξ
Pr(χ f t � 1)dG(ξ)

� 0.8. (14)

where the probabilities of entry by industry (χ f jt) and by firm (χ f t) are given in Section B.2.

C.2 Proof of Proposition 2: Inference of Scalability and Mutability
First, I show that at true parameter values Θ, γ, the following J × J structural moment conditions
hold true:

E f

[
(ε f jt − ε̊ f jt−1) ˜∆ log S f kt | χ f j,t−1 � 1, χ f k ,t−1 � 1

]
� 0, ∀ j, k , ∀t � {2, 3}

where ˜∆ log S f kt is the de-meaned shock among shocks received by all firms that are active in
industry k, and ε̊ f j,t−1 is the structural error conditional on the firm being active in industry j:

ε̊ f j,t−1 ≡ X f j,t−1 − E[X f j,t−1 |ξ f ,t−1 , χ f j,t−1 � 1].

By the law of iterated expectations, the moment condition for any pair of industries j, k in any
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year t � {2, 3} can be written as

Eξ f ,t−1 ,∆ log S f t

[
˜∆ log S f kt E f

[
(ε f jt − ε̊ f jt−1) | χ f j,t−1 � 1, χ f k ,t−1 � 1, ξ f ,t−1 ,∆ log S f t

]
| χ f j,t−1 � 1, χ f k ,t−1 � 1

]
,

where the (ε f jt − ε̊ f jt−1) terms inside the inner expectation are zero in expectation because

E f
[
X f jt | χ f j,t−1 � 1, χ f k ,t−1 � 1, ξ f ,t−1 ,∆ log S f t

]
� E

[
X f jt | ξ f ,t

]
,

usingAssumption4 (relevance), so that ξ f ,t canbe expressedas aknown functionof (ξ f ,t−1 ,∆ log S f t)),
and

E f
[
X f j,t−1 | χ f j,t−1 � 1, χ f k ,t−1 � 1, ξ f ,t−1 ,∆ log S f t

]
� E

[
X f j,t−1 | ξ f ,t−1 , χ f j,t−1 � 1

]
,

using Assumption 5 (conditional independence), so that ∆ log S f t can be dropped conditional on
the industry presence χ and unobserved profitability shifters. Note that it is important for∆ log S f t

to be independent of realized outcomes X f j,t−1, so what Assumption 5 rules out is for firms that
do unexpectedly well (conditional on ξ) to receive higher demand shocks.

Next, I show that inference can proceed off of computable sample analogs of the moment
conditions. One component of the moment condition is pure data (the terms inside structural
residuals ε that correspond to realized sales X f t). I label the set of firms that are active in any pair
of industries j, k in year t − 1 by n f j,t−1 and construct

Ξo
jkt ≡

1
n jk ,t−1

∑
f ∈n jk ,t−1

(X f jt − X f j,t−1) ˜∆ log S f kt , ∀ j, k , ∀t � {2, 3}.

The remaining components of the structural residuals in the moment condition is model-
implied sales (i.e. E[X f j,t−1 |ξ f ,t−1 , χ f j,t−1 � 1]). I re-write this as:

Ξm
jkt ≡ E f

[ (
E[X f jt |ξ f t] − E[X f j,t−1 |ξ f ,t−1 , χ f j,t−1 � 1]

) ˜∆ log S f kt | χ f j,t−1 � 1, χ f k ,t−1 � 1
]

� Eξ f ,t−1 ,∆ log S f t

[
g jk(ξ f j,t−1 ,∆ log S f t) | χ f j,t−1 � 1, χ f k ,t−1 � 1

]
� E∆ log S f t ,χ f ,t−1

[∫
ξ f ,t−1

g jk(ξ f j,t−1 ,∆ log S f kt) Pr(ξ f ,t−1 | χ f ,t−1)dξ f ,t−1 | χ f j,t−1 � 1, χ f k ,t−1 � 1

]
� E∆ log S f t ,χ f ,t−1

[∫
ξ

g jk(ξ,∆ log S f kt)
Pr(χ f ,t−1 | ξ)∫

ξ
Pr(χ f ,t−1 | ξ)dG(ξ)

dG(ξ) | χ f j,t−1 � 1, χ f k ,t−1 � 1

]
where the second line uses the law of iterated expectations and introduces a g jk function to capture
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the inner expectation terms:

g jk(ξ f j,t−1 ,∆ log S f t) ≡
˜∆ log S f ktE f

[ (
E[X f jt |ξ f t] − E[X f j,t−1 |ξ f ,t−1 , χ f j,t−1 � 1]

)
|∆ log S f t , ξ f ,t−1 , χ f j,t−1 � 1, χ f k ,t−1 � 1

]
,

which is an analytical function of (ξ f j,t−1 ,∆ log S f t) given the solution properties of the model and
again, given Assumption 4 (relevance), so that ξ f ,t is known. The third line applies Assumption
5 (conditional independence) to get Pr(ξ f ,t−1 | ∆SHK f t , χ f ,t−1) � Pr(ξ f ,t−1 | χ f ,t−1) and the forth
line applies Bayes rule to transform Pr(ξ f ,t−1 | χ f ,t−1) into known analytical extensive margin
probabilities given the model.

The sample analog of the last line is given by

Ξm
jkt ≡

1
n jk ,t−1

∑
f ∈n jk ,t−1

∑
s∈S

ω f s ,t−1 m f jk(ξs ,∆ log S f t) ˜∆ log S f kt ,

where ωs f are probability weights that stand for the probability that a simulated firm s has
fundamentals ξ that belong to firm f in the data (with industry presence χ f ,t−1) relative to other
simulated firms s′ ∈ S,

ω f s ,t−1 ≡
∏

j Pr(χ j,t−1 � χ f j,t−1 |ξs)∑
s′
∏

j Pr(χ j,t−1 � χ f j,t−1 |ξs′)
,

By the law of large numbers, m jkt ≡ Ξo
jkt − Ξ

m
jkt in the Proposition can be written as

lim
n jk ,t−1→∞

lim
s→∞
Ξo

jkt − Ξ
m
jkt � E f

[
(ε f jt − ε̊ f jt−1) ˜∆ log S f kt | χ f j,t−1 � 1, χ f k ,t−1 � 1

]
� 0.

C.3 External Validity
Table 12 displays the distribution of firms and sales over firm scope behind Figure 4. These are
computed by simulating the actual outcomes of firms in the model when matched to data on
output and input expenditure by industry in 1997 (which is done for estimation).

C.4 General Equilibrium Definition
I introduce some more notation used to characterize the open economy equilibrium. Take the
perspective of US as the domestic economy trading with a set DF of foreign countries. Let D
denote the US manufacturing trade deficit (exports of non-manufacturing services) vis-à-vis the
rest of the world. Let Ȳd , j denote the total market size faced by US firms in each industry j
in a foreign destination d ∈ DF, and suppose that all firms are common exporters.56 Let ¯PXdj

56My paper does not consider the selection-into-exporting margin. But in fact, the common-exporter
assumption is not extreme. It suffices that firms have common ex-ante expectations of exporting. One
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Table 12: Scope Distribution in the Data and Model, 1997

Share of Firms (%) Share of Sales (%)
Number of Industries Data Model Data Model

1 80.99 80.15 26.13 25.00
2 13.01 13.54 10.80 15.74
3 3.32 3.29 7.34 9.43
4 1.33 1.07 5.51 6.33
5 0.61 0.44 4.08 5.48
6 0.28 0.23 2.89 5.76
7 0.14 0.15 3.54 6.71
8 0.08 0.10 3.63 4.05
9 + 0.25 1.03 36.05 21.49

Notes: The distribution of firms by scope, in the data and in the model (with the six
estimated parameters, Θ, γ0 , γ1). Sales of firms with 9 or more industries could not be
simulated via brute force due to memory issues when simulating the discrete Poisson
process. Instead, it is backed out from the fact that the share of sales by firms with one
industry was set to equal 0.25 in the estimation.

represent indices of price competitiveness in foreign market d by all non-US firms. Let ¯PMdj

represent indices of price competitiveness in the US market by foreign firms from d. For example,
an increase in ¯PMchina , j indicates that prices of Chinese goods in theUShave been lowered (become
more competitive).

Definition 1 (General Equilibrium) Given exogenous foreign price competitiveness abroad and at home,
{ ¯PXdj , ¯PMdj} j∈J ,d∈DF , foreign expenditures {Ȳdj} j∈J ,d∈DF , general equilibrium is described by a wage,
w, and a vector of domestic price competitiveness:

PD j ≡ N
∫
ξ
E

[
p

1−σ j

f j

]
dG(ξ) ∀ j ∈ J

such that the following equations and related definitions hold:

(i) Total industry expenditures in the US is given by

Yj �
∑

k

βk jXk + βF, j(wL),

where X j stands for domestic industry gross output, βk j is the share of gross output of industry

micro-foundation, for example, would be if each capital allocated to industry j has a probability of being
used at the same time for export market production. A firm then enters into exporting if and only if it has
a non-zero amount of capital adaptable for export markets. Despite this common probability of exporting,
empirically larger firms would be more likely to export because of a higher chance of having at least some
capital be adapted for export markets.
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k expensed on inputs from industry j, and βF, j reflects the share of final consumption spent on
manufacturing industry j.

(ii) Goods market clearing yields a system of J equations in J residual profit shifters B j : output produced
over all firms has to equal total domestic industry output, which has to equal output consumed at home
plus output exported to foreign markets:

X j � N
∫
ξ
E[X f j]dG(ξ)

� Yj
PD j

PD j +
∑

d∈DF ¯PMdj
+

∑
d∈DF

Ȳdj
PD j

PD j + ¯PXdj
, ∀ j ∈ J ,

(15)

(iii) Domestic competitiveness can be related to residual profit shifters B j (through combining equation 15
with an open-economy version of equation 6):

B j � (1 − ς j)
(

c j

ς j

) ς j
ς j−1

(
X j

PD j

) 1
σ j (1−ς j )

, (16)

where c j stands for the unit price index of a bundle of production inputs assembled using a homothetic
Cobb-Douglas technology:

c j ≡ w β̃ jl
∏
m∈ J

P
β̃ jm
m ,

where β̃ jl , β̃ jm are the share of expenditures (among all expenditures on production inputs) of industry
j on input m ∈ J or labor value-added l, and the domestic consumption price index P j (in both final
and intermediate consumption) is given by:

P
1−σ j

j ≡ PD j +
∑

d∈DF

¯PMdj . (17)

(iv) The trade balance condition equates manufacturing imports with manufacturing exports plus net
exports in the non-manufacturing sector, D (the manufacturing trade deficit):∑

j∈J
Yj

∑
d∈DF ¯PMdj

PD j +
∑

d∈DF ¯PMdj
� D +

∑
j∈J

∑
d∈DF

Ȳdj
PD j

PD j + ¯PXdj
. (18)

(v) The residual non-manufacturing sector is produced with constant returns to scale using labor under
perfect competition. Domestic value-added in the residual sector is given by

wLNM � D +Π + T + βF,NM(wL),

whereT is government tariffs (assumed 0 in initial equilibrium), βF,NM is the share of final consumption
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by private households on the non-manufacturing sector, andΠ is net profits in themanufacturing sector
given by equation (10).

(vi) Manufacturing sector payroll is the sum of factor payments in stage II production and stage I capital
accumulation:

wLM �

∑
k∈J

©«1 −
∑
j∈J

βk j
ª®¬ Xk −Π,

where LM + LNM � L satisfies labor market clearing.

The equilibrium set-up in Definition 1 accommodates different assumptions on how D adjusts
to external shocks. Assuming that D is constant allows the use of the trade balance equation (18)
to solve wages, w. On the other hand, assuming that D is generated by a perfectly elastic foreign
demand for residual services pins down w across counterfactuals; D is simply computed from
subtracting new manufacturing imports and exports under fixed w, from the same trade balance
equation (18). The results I present in this paper follow this second approach in order to not have
wage effects generate spillovers.

C.5 Proof of Proposition 3: Aggregate Impact of Joint Production
Notation: let the home country (the US) be denoted by u, and the set of foreign countries byDF.

The system of equations in Definition 1 can be log-differentiated to yield a unified system
of equations linking endogenous equilibrium variables (price indices, sales, etc) to changes in
exogenous variables (changes to domestic scale L, foreign demand Ȳ, and foreign competitiveness
PX, PM).

It is convenient to solve for the equilibrium impact on endogenous variables through their effect
on domestic producer price competitiveness, PD j (an inverse price term defined in Definition 1).
The two lines of equation (15) can be interpreted as a supply equals demand market clearing
condition. The first line describes a flexible supply-side—the relationship between domestic
producer price competitiveness PD j and market output X j to sustain firm production incentives
under monopolistic competition. The second line describes a downward-sloping demand-curve:
the higher is domestic price competitiveness PD j (the lower are producer prices), the greater is
the value of market output. Because both final demand and intermediate demand is unit-elastic
(Cobb-Douglas), the only impact of lower prices on market output is through a foreign-market-
share-stealing effect.

Demand-side. Log-differentiating the second lineof equation (15) yields the followingdemand-
side relationship between sales and changes in gross output X and domestic productivity PD, in
matrix algebra:

d log X �
(
I −ΩD )−1

(
diag(λcpt)d log PD + d log S + diag(λX

u j)d log PS
)
, (19)
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where λcpt
j measures the potential for US firms to gain market share from foreign competition in

each market:
λ

cpt
j ≡

∑
d∈{u ,DF}

λX
dj(1 − λ

M
dj ),

λX
dj is the share of the home country’s sales going to d, λM

dj is the share of country d’s consumption
originating from the home country, the matrix ΩD contains external input-output coefficients
denoting the extent to which changes in gross output in other industries k′ affect gross output in j:

[ΩD] jk ≡ λX
u j(1 − λ

X
j,F)

βk jXk∑
k′∈J βk′ jXk′

,

where λX
j,F is the share of final use among all domestic consumption of industry j. I group together

the different types of exogenous shocks into two terms: (i) changes to market size faced by US
producers, d log S, and (ii) changes to prices of foreign goods in the US, d log PS (while this is also
a market size shifter, I single it out here because import prices are a cost shifter in the supply-side
equation):

d log S j ≡ λX
u jλ

X
j,F d log L +

∑
d∈DF

λX
dj d log Ȳdj −

∑
d∈DF

λX
dj(1 − λ

M
dj )d log ¯PXdj ,

d log PS j ≡ −
∑

d∈DF

λUM
dj d log ¯PM j ,

where λUM
dj is the share of home country’s consumption originating from country d,

Note that when the home country is in autarky, λcpt � 0, there is no demand-side adjustment
of industry output with respect to prices (industry demand is unit-elastic with respect to prices).

Supply-side. I next turn to the supply-side relationship between market size (residual prof-
its) and prices. The first line of equation (15) can be log-differentiated (switching the order of
summation across inputs, industries, and firms) to yield

Υ−1 d log X � d log B,

whereΥ is the aggregatematrix of firm-level cross-price elasticities of supplygivenby equation (13).
I log-differentiate the expression for residual profits B j in equation (16), open up the production
input cost index c j to reflect intermediate input purchases from manufacturing industries, and
replace d log B with d log X given the above equation to get

Ψd log X � −
(
I −ΩS diag

(
λX

u j

))
d log PD −ΩS d log PS, (20)
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whereΨ is an inverse matrix of supply elasticities with terms given by

[Ψ] jk ≡ σ j(1 − ς j)[Υ−1] jk − 1 j�k ∀ j, k ∈ J ,

and ΩS is matrix of external input-output price-related coefficients given by

[ΩS] jk ≡ β jk
σ j

σk − 1 ∀ j, k ∈ J .

Equations (20) and (19) represent two systems of equations in two vectors of unknowns (X and
PD)—aggregate demand and supply curves. I combine them to express the impact on equilibrium
domestic price competitiveness PD changes in terms of arbitrary external shocks collected in
d log PS and d log S:

d log PD � −
(
I −ΩSdiag(λM

u ) +Ψ
(
I −ΩD )−1 diag(λcpt)

)−1
×

×
(
Ψ

(
I −ΩD )−1 d log S +

(
ΩS

+Ψ
(
I −ΩD )−1 diag(λX

u )
)

d log PS
)
. (21)

Proposition 3 follows the fact that the PPI is defined as (1 − σ j)d logPj � d log PD j and from
setting d log PS � 0 in the above expression (so that the only exogenous shock is to market size).

C.6 Calibration to US Manufacturing Sector
Notation: DF � {c , r} refer to China and the rest-of-the-world composite respectively.

Data in the Initial Equilibrium. These equilibrium definitions allow me to impute con-
sumption expenditure shares β j , the manufacturing deficit D, all price competitiveness indices,
and foreign expenditures Ȳc , j , Ȳr, j given US and world trade and industry level data in 2017. I
introduce the data I use from public data in 2017:

1. Data on gross output by manufacturing industry, X j come from the BEA in 2017.

2. I hold the number of total manufacturing firms, N , fixed, at 318,000.

3. Data on β jk and ςk come from the 2012 BEA I/O tables (the 2017 tables are not yet available).57

4. Trade data in 2017 on US imports and exports by country and industry (after mapping HS10
to BEAX) come from the US Census Bureau (made available by Schott (2008)).58

5. World trade data in 2017 by industry and country come from BACI Comtrade.

57There are a few industries where implied input-output use shares are so large that final use is predicted
to be negative. I adjust input-output shares downward by a proportional factor for that industry until final
use is at least 2% of gross consumption.

58There are a few industries where US exports is higher than measures of gross output in BEA data. I
harmonize the two data sources by adjusting gross output, X j , to be at least 1% higher than gross exports.
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Variables in the Model. Using the trade data, I compute λX
dj as the share of US firms’ total

sales in industry j going to destination d ∈ {u , r, c}, λM
dj is the share of destination d ∈ {u , r, c}’s

consumption of industry j on goods sold by the US. These trade shares are important; note that
all the ratios of price competitiveness in the definition of equilibrium can be written as these
observable trade shares.

I compute industry gross expenditures as Yj �
X jλX

u j

λM
u j

.

Using the estimated micro parameters, I repeat the same macro inversion steps as in the
structural estimation to estimate macro variables α, B, Z in 2017. I use 1997 expenditure shares on
knowledge inputs categories m ∈ MKLG by each industry j combined with 2017 output data to
impute expenses on knowledge inputs M jm used in the inversion. With these macro variables on
hand I compute net profits in the manufacturing sector Π using equation (10).

I compute the manufacturing deficit as the difference between total consumption and total
output: D �

∑
j∈J Yj −

∑
j∈J X j . I normalize the wage w to 1 by choosing an appropriate unit in

which to measure efficiency-adjusted labor, whereby

L � GDP −Π,

where GDP is 19.4 trillion in 2017. The share of consumption on residual services is then given by:

1 − βS �

∑
j∈J

(
Yj −

∑
k βk jXk

)
L

.

I compute final consumption shares in manufacturing, βF,k , as:

βF,k �
Yk −

∑
j βk jXk

L
.

Foreign demand in the model is given by Ȳr, jλM
r j � EXur j where EXur j is US exports to

destination r in industry j. An identical expression pins down Ȳc , j .

C.7 Counterfactuals: Model Responses to Small Shocks

C.7.1 Quantifying the Impact of Joint Production

I use the calibrated model and Proposition 3 to quantify the impact of small shocks on equilibrium
producer price indices. The main results described in Figure 6 are computed as follows. I express
the impact as:

d log PD � Ξd log S,
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where Ξ is a matrix defined below, taking on different values across the scenarios described in the
main body of text.

Ξ � −
(
I −ΩSdiag(λM

u ) +Ψ
(
I −ΩD )−1 diag(λcpt)

)−1
Ψ

(
I −ΩD )−1

For each scenario (associated with a Ξ), I decompose Ξ into diagonal and off-diagonal elements,
respectively, as

Ξ � ΞDIAG
+ ΞCROSS .

The values of λX
j ≡ X j/X are shares of industry j output among total manufacturing output X. I

use these shares to collapse the vector of price competitiveness effects d log PD j into an aggregate
producer price index. I compute, for example, the direct effect of a proportional change in foreign
market size across all industries J on the PPI as:

d log PPIDIRECT
�

(
λX

1 − σ

)′
× ΞDIAG × (λX

r + λX
c ), (22)

and equivalently for component due to cross-industry spillovers using the ΞCROSS matrix above
instead of ΞDIAG.

Table 13 describes the numbers behind producing Figure 6. Because prices fall in response to
scale, I invert the PPI to convert negative numbers into positive numbers, so the responses can be
construed of as responses of model-consistent productivity (inverse prices) to exogenous shocks.
I compute the effects of a 1% proportional rise in foreign demand (across all industries) on the
manufacturing PPI and gross output. To compute the effect on industry gross output, I solve out
for the demand and supply equations (20) and (19) to express d log X in terms of exogenous shocks
instead of d log PD. The change inmanufacturing sector gross output is computed using the same
λX

j -weighted average over industry-level changes. I further decompose the effect of spillovers
(shown in Figure 6) into positive and negative contributions, to emphasize that the majority of
gross cross-industry elasticities are price-decreasing (positive impact on inverse-PPI).

I compute the share of the total price impact due to the joint production matrix (non-zero
cross-price elasticities of supply) by differencing the PPI impact between scenarios (b) and (a), and
likewise for scenarios (d) and (c) and expressing this difference as a share of the total PPI effect (in
(b) and (d), respectively).

Table 14 presents results for themain counterfactual, scenario (b), when foreign demand shocks
occur industry-by-industry rather than manufacturing sector-wide. It shows the top and bottom
industries that transmit industry shocks into other parts of themanufacturing sector. I compute the
proportion of PPI response that occurs as a result of spillovers relative to the total effect (spillovers
+ direct) whenever the industry receives an industry-specific demand shock.59 A positive spillover

59The top industries listed do not indicate the industries where demand shocks generate the highest total
aggregate productivity gains, nor industries where the total elasticity of productivity to gross output is
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Table 13: Effect of a 1% Increase in Foreign Demand on Manufacturing PPI and Output

Scenario (a) (b) (c) (d)

Response of Inverse PPI (%) 0.066 0.082 0.636 1.410
Direct 0.066 0.066 0.067 0.134
Positive Spillovers 0 0.018 0.526 1.275
Negative Spillovers 0 -0.002 0 0.000

Response of Gross Output (%) 0.387 0.416 1.976 3.922
Direct 0.387 0.392 0.515 0.581
Positive Spillovers 0 0.032 1.460 3.342
Negative Spillovers 0 -0.003 0 0.000

Elasticity of Inverse PPI with respect to Gross Output 0.17 0.20 0.32 0.36
share due to internal cross-price elasticities of supply / 0.20 / 0.55

Notes: This table depicts the effect on manufacturing inverse PPI and output in the US due to a proportional 1%
foreign demand shock (across all industries). The sub-rows decompose the total effects into those accruing due
to direct, own-industry responses versus cross-industry spillovers. A ‘positive’ spillover refers to a decrease in
the PPI. The four columns depict four scenarios corresponding to different versions of the underlying economy:
(a) only internal scale economies (along the own-industry), (b) both internal scale and scope economies due
to the full joint production matrix, (c) only internal scale economies combined with external I/O linkages, (d)
both internal scale and scope economies combined with external I/O linkages. The elasticities in Figure 6
correspond to the direct and spillover inverse PPI effects scaled by the total effect on gross output. The bars
for each scenario sum to the penultimate row, the total elasticity of the PPI with respect to gross output. The
last row operates across scenarios: comparing the contribution to the PPI response when internal cross-price
elasticities of supply are allowed to be non-zero. I take the difference in PPI between (b) and (a) divided by the
PPI response in (b). I do the analogous computation for scenario (d) by comparing to (c).
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Table 14: Top and Bottom Industries by Positive Spillovers Generated

BEAX Description Share

334514 Totalizing fluid meter and counting device 0.71
3122A0 Tobacco product manufacturing 0.71
334510 Electromedical and electrotherapeutic apparatus manufacturing 0.60
334516 Analytical laboratory instrument 0.58
33451B Watch, clock, and other measuring and controlling device manufacturing 0.57
33641A Propulsion units and parts for space vehicles and guided missiles 0.52
33461X Manufacturing and reproducing magnetic and optical media 0.50
339115 Ophthalmic goods manufacturing 0.46
334511 Search, detection, and navigation instruments 0.45
325620 Toilet preparation manufacturing 0.44

31161A Animal (except poultry) slaughtering, rendering, and processing 0.06
326160 Plastics bottle manufacturing 0.06
314110 Carpet and rug mills 0.06
311920 Coffee and tea manufacturing 0.06
312140 Distilleries 0.05
337215 Showcase, partition, shelving, and locker manufacturing 0.05
311221 Wet corn milling 0.03
33142X Copper rolling, drawing, extruding and alloying 0.02
327992 Ground or treated mineral and earth manufacturing 0.02
311930 Flavoring syrup and concentrate manufacturing -0.06

Notes: This table depicts the top and bottom 10 industries in terms of the proportion of aggregate PPI
impact (due to a marginal demand shock in that industry) that accrues due to net cross-industry spillovers.
A positive spillover means that a positive demand shock in that industry leads to price declines in other
manufacturing industries. These effects are computed using equation (13); the numbers here correspond to
the scatterplot in Figure 7. Results are generated as an average of 100 monte carlo simulations of the model’s
draws of firm productivities to wash out sampling variation.

means that a positive demand shock in that industry leads to price declines in other manufacturing
industries.

C.7.2 Robustness to Alternative values of σ

I explore the sensitivity of the results in Table 13 to alternative values of σ j , against the benchmark
of σ j � 5 ∀ j. I consider three different exercises. First, I vary the absolute value of σ but continue
to hold it constant across industries. Figure 8 shows how the elasticity of the inverse PPI with
respect to gross output varies with values of σ ∈ (3, 10), decomposing the total PPI response to
the direct, own-industry effect versus net spillovers. While the direct effect decreases as expected
with the value of σ j , the indirect effect does so at a much slower pace, contributing between 3 and

highest. The top 5 industries by total aggregate productivity gains are aircraft manufacturing, petroleum
refineries, other motor vehicle parts, light truck and utility vehicles, and broadcast and wireless communi-
cations equipment.
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Figure 8: Elasticity of Inverse PPI to Gross Output under alternative values of σ

Notes: This graph explores the sensitivity of the results in Figure 6 (where σ j � 5 ∀ j) to alternative common
values of σ across industries. I decompose the elasticity of inverse PPI to output in scenario (b) (no I/O
linkages) into the direct effect in the blue line and an indirect (cross-industry) effect in the orange line.

5 percentage points to the elasticity aggregate productivity to gross output across the entire range
of values of σ.

In the next two calibrations, I allow σ j to vary across industries j by: (i) assuming that profit
shares (gross operating profits) in each industry are equal to 1

σ j
(as would be true in a case with

constant returns to scale, monopolistically competitive firms, and sunk entry costs paid in some
pre-period), and (ii) targeting the same own-sector returns to scale as in Bartelme et al. (2019).
While assumption (i) is ad-hoc (and not consistent with the model), the values of σ j serve as a
useful benchmark as they appear in other papers. Assumption (ii) is, however, model-consistent.
In this scenario, I first generate a mapping from BEAX to the two-digit manufacturing sectors in
Table 1 of Bartelme et al. (2019), denoted by s. I allow for as many differences across σ j as there are
sectors s, so all σ j is the same within a sector but different across sectors. I then solve for the values
of σs that would generate the following relationship between sectoral price indices and sectoral
size (from combining equations 22 and 20).

d log PPIs

d log Xs
� −γBCDR

s � −
∑
j∈s

λX
j

1 − σs

∑
k∈s

Ψ jk , ∀s ,
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Table 15: Effect of a 1% Increase in Foreign Demand on Manufacturing PPI and Output:
Robustness under different values of σ j

Calibrated values of σ j Baseline (=5) (i) Profit Share (ii) BCDR
Scenario (b) (d) (b) (d) (b) (d)

Response of Inverse PPI (%) 0.082 1.410 0.085 0.417 0.064 1.073
Direct 0.066 0.134 0.069 0.094 0.050 0.101
Positive Spillovers 0.018 1.275 0.018 0.323 0.016 0.972
Negative Spillovers -0.002 0.000 -0.002 0.000 -0.002 0.000

Response of Gross Output (%) 0.416 3.922 0.408 1.639 0.395 3.299
Direct 0.387 0.581 0.372 0.454 0.365 0.524
Positive Spillovers 0.032 3.342 0.039 1.185 0.032 2.775
Negative Spillovers -0.003 0.000 -0.004 0.000 -0.003 0.000

Elasticity of Inverse PPI w.r.t. Gross Output 0.20 0.36 0.21 0.25 0.16 0.33
share due to internal cross-price 0.20 0.55 0.19 0.43 0.23 0.52
elasticities of supply

Notes: This table explores the sensitivity of results in Table 13 and Figure 6 to alternative calibrations of σ j that
vary across industries. Over the rows of each column I compute the effect on inverse PPI and output in the
US due to a proportional 1% foreign demand shock (across all industries). The sub-rows decompose the total
effects into those accruing due to direct, own-industry responses versus spillovers across industries. A ‘positive’
spillover refers to a decrease in the PPI. The penultimate row divides the total response of inverse PPI by the
total response of output. The last row operates across scenarios: comparing the contribution to the PPI response
when internal cross-price elasticities of supply are allowed to be non-zero. I take the difference in PPI between
(b) and (a) divided by the PPI response in (b). I do the analogous computation for scenario (d) by comparing to
(c). Across the columns, I alter the values of σ and the scenario. The first two columns reproduce key results in
Table 13: results obtained under the baseline assumption of σ j � 5 ∀ j, for scenarios (b) (no I/O linkages) and (d)
(incl. I/O linkages). The next set of two columns repeat the baseline calculations but using σ j calibrated to match
the profit share in each industry assuming constant returns to scale, and the final set of two columns repeat the
baseline calculations but using σs calibrated (at the 2-digit manufacturing level) to match sectoral level returns to
scale in Bartelme et al. (2019).

where γBCDR
s are estimates of scale elasticities in Table 1 of Bartelme et al. (2019).60

Table 15 displays how the baseline results in Table 13 change with respect to the two different
calibrations, both with and without I/O linkages. The different calibrations with heterogeneous
σ j do not alter the main quantitative message that spillovers due to joint production are large. In
the benchmarkmodel set-upwithout input-output links (b), internal cross-price elasticities arising
from joint production accounts for between 19% (scenario (i), Profit Share) and 23% (scenario (ii),
BCDR) of the total elasticity of the inverse PPI with respect to gross output. Whereas direct, own-
industry effects under scenario (b) of the BCDR calibration generate an aggregate scale elasticity of
0.13 (=0.050/0.395), accounting for spillovers induced by internal cross-price elasticities of supply
brings this up to 0.16 (=0.064/0.395).

60Note that this procedure does attribute (correctly) the cross-industry spillovers across industries within
a sector to sectoral economies of scale. The only productivity response that would be missed in BCDR are
cross-sectoral spillovers.
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C.8 Counterfactuals: Model Responses to Arbitrary Large Shocks

C.8.1 Tariff Shocks

The model accommodates different types of counterfactual shocks. I consider new tariffs imposed
by the US on imports fromChina, denoted by τcu j , and import tariffs imposed by China on imports
from the US, denoted by τuc j . I model tariffs τ ≥ 1 as ad-valorem, so that

1. The change in Chinese price competitiveness in the US is ˆ̄PMc j � τ
1−σ j

cu j .

2. The change inUS price competitiveness in China can bemodeled as ˆ̄PXc j � τ
σ j−1
uc j . Tariffs also

cause take-home revenues of firms to fall to 1
τuc j

of tax-inclusive sales. This can be reflected

by a change in ˆ̄Yc j � τ−1
uc j .

3. US import tariff revenues are given by

T′ �
∑

j

τcu j − 1
τcu j

τ
1−σ j

cu j λ
UM
c j P̂

σ j−1
j ,

I assume that pre-existing tariffs on Chinese imports are zero. If they are non-zero, the
new tariffs change infra-marginal tariff revenues and the calculation needs to be revised. I
assume that Chinese tariffs on US goods are taken out of the system and do not go towards
increasing market demand Ȳc , j .

C.8.2 Solving for the Model’s Responses in Exact Changes

For any set of counterfactual exogenous shocks, the system of equations admits a new solution
for PD j and w. I solve the system of equations in terms of exact hat changes. Specifically, for any
guess of ˆPD j and ŵ, I can compute

B̂ j � ĉ

ς j
ς j−1

j

(
X̂ j

ˆPD j

) 1
σ j (1−ς j )

,

where ĉ j is given by

ĉ j � ŵ β̃l j
∏
m∈ J

P̂
β̃ jm
m ,

and P̂ j is the change in the domestic price index given by

P̂
1−σ j

j � ˆPD jλ
UM
u j +

ˆ̄PMc jλ
UM
c j +

ˆ̄PMr jλ
UM
r j ,

and X̂ j is given by

X̂ jX j � Y′j ˆPD jλ
M
u , j P̂

σ j−1
j + Ȳc , j

ˆ̄Yc , j ˆPD jλ
M
c j P̂

σ j−1
chn , j + Ȳr, j

ˆ̄Yr, j ˆPD jλ
M
r j P̂

σ j−1
row , j ,
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and P̂row , j is the change in the rest-of-world consumption price index given by

P̂
1−σ j

row , j �
ˆPD jλ

M
r j +

ˆ̄PXr j(1 − λM
r j ),

P̂chn , j is the change in the consumption price index in China given by

P̂
1−σ j

chn , j �
ˆPD jλ

M
c j +

ˆ̄PXc j(1 − λM
c j ),

and finally the new vector of gross expenditures Y′j can be inverted from

Y′j �
∑

k

βk j
(
X̂kXk

)
+ βF, j ŵLL̂,

where T′ is tariff revenues defined above.
To evaluate the guess I use a system of J equations equal to deviations between industry sales

as computed above, X′j , and the implied industry sales (by solving the firm’s problem) given by
equation 15 under the new B′j . I also use the trade balance condition:∑

j

Y′j � D′ +
∑

j

X̂ jX j ,

to either pin down D′when ŵ � 1 ( foreign demand for residual services is assumed to be perfectly
elastic), or to solve for ŵ when D is held exogenous (as is more typical in trade counterfactuals). I
find that a gradient based optimization algorithm works very well with this system of equations.

Equilibrium Changes. Throughout counterfactuals presented in Table 6, I compute several
changes in macroeconomic variables of interest:

1. The change in the manufacturing CPI (consumer price deflator) is∏
j

P̂
βF, j

j

2. The change in the manufacturing CPI excluding the domestic response of productivity is∏
j

(
P̂CTF

j

)βF, j
,

where (
P̂CTF

j

)1−σ j
� λUM

u j +
ˆ̄PMc jλ

UM
c j +

ˆ̄PMr jλ
UM
r j .

3. Expressions for the change in imports, US output and US exports in each industry, tariff
revenues and the deficit can also be computed directly given the equations above.
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C.8.3 Alternative Tariffs

I compute the vector of alternative tariffs as follows. First, local effects of external shocks on the
CPI can be computed from log-differentiating the price index equation (17):

d log CPI �
∑

j

β j d log P j �
∑

j

β j

1 − σ j

(
λM

u j d log PD j − d log PS j

)
,

where the change in foreign prices in the US is given by d log PS j � λUM
c j (σ j − 1)d log τ j . I use

equation (21) to replace d log PD j above with its value in terms of the exogenous tariff shock,
{ d log τ j} j .

Second, the change in imports from China is given by

d log IMc �
∑

j

λc j

(
−λUM

u j d log PD j − (1 − λUM
c j )(σ j − 1)d log τ j + d log Yj

)
,

where λc j is the share among all US imports from China that come form industry j, and again
d log Yj and d log PD j can be written in terms of d log τ j using the equilibrium relationships
surrounding equation (21).

A marginal tariff in each industry thus generates a cost (higher CPI) versus a benefit (reducing
imports from China, assuming that it is a policy-making objective). I manipulate the matrix of
relationships above to yield

τ̊k �

−d log IMc
d log τk

d log CPI
d log τk

, ∀k ∈ J ,

which expresses the effect of a marginal tariff in industry k towards achieving the policy target
(reducing imports from China) per unit of increase in the CPI. Industries k with a higher τ̊k should
have higher tariffs (due to their higher benefit / cost ratio), but exactly how much higher is not
exact given the non-linear structure of the model. I use this starting vector of alternative tariffs, τ̊,
as the basis for a search over various scaling parameters β ≥ 0:

τ j � max(1, ατ̊βj ),

where the α is chosen so that the alternative tariffs τ j reduce Chinese imports by 41%, the same
amount as uniform tariffs of 20% would. Intuitively, values of β adjust the skew / bias that is
applied to the tariffs identified by the local propagation matrix as generating higher benefit / cost
ratios.61

Figure 9 displays the impact of alternative tariffs on the CPI and the PPI, across varying degrees
of industry bias in tariffs on the x-axis (induced by values of β). For each value of β, the parameter

61While the values τ̊ are identified using a local propagationmatrix, the computed effects shown in Figure
9 and Table 6 are fully non-linear and not local approximations.
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Figure 9: Impact of Alternative Tariff Policies on US Manufacturing CPI and Productivity

Notes: This graph displays the impact on the manufacturing CPI (in blue) and PPI (in orange) from a range
of tariff policies that are designed to achieve the same reduction in US imports from China (of 41%). Tariff
policies range across the x-axis in terms of their degree of bias towards the vector τ̊ identified by themodel’s
propagation matrix. The bias is summarized as the highest value of τ among the vector. A highest value of
1.2 (the initial point) reflects the benchmark counterfactual of blanket 20% tariffs.

α is chosen to scale the set of tariffs so that the overall impact on reducing Chinese imports is
41%. The left-most point, where tariffs of τ � 1.2 are symmetric across industries, corresponds to
Column (2) of Table 6. Intuitively, as bias increases, more concentrated tariffs are required in order
to achieve the same reduction in Chinese imports. Throughout these exercises I restrict tariffs to
be weakly positive (so import subsidies are ruled out).

C.8.4 China Import Tariff Counterfactual: Model with Input-Output Linkages

Finally, in Table 16, I repeat the China import tariff counterfactuals under the extension of the
model with input-output linkages. First, in the neoclassical setting under constant returns to scale
(Column 1), I find that input-output linkages generate higher increases in the CPI relative to the
case without I/O linkages. Not only are prices of directly imported goods higher, but domestic
goods prices also increase due to higher input costs. Column (2), which displays results from my
model, highlights additional competing forces coming from joint production. While import taxes
raise the cost of foreign imported inputs, substitution towards the use of domestic intermediate
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goods generates a scale effect which lowers the cost of domestic inputs. These domestic price
effects are amplified by further success in export markets (the foreign demand for US exports is
elastic), so that the net effect on upstream input prices faced by US producers in any industry
is theoretically ambiguous. I find, in this calibration, that the domestic scale effect dominates.
The results in Column (2) under input-output linkages actually reduce welfare losses of tariffs
compared to the main results presented in column (2) of Table 6 (without input-output linkages).
The improved success of domestic producers is reflected in an increase in net profits (equal to 0.28%
of gross manufacturing output) and a much larger reduction in the trade deficit. Finally, column
(3) displays results from applying a similar process of searching for alternative import tariffs that
mitigate the reduction in the CPI while achieving the same reduction in imports from China.
The results demonstrate that there are pure gains from import protection in this environment
with scale and scope economies, exogenous foreign prices, and wages pinned down by a residual
(non-manufacturing) sector. These results are sensitive, however, to assumptions on the foreign
import demand elasticity (implicit behind this setup is the ability of US producers to steal market
share from foreign competitors in foreign markets). Inelastic foreign demand would curtail the
amplification of domestic scale effects and would turn the impact on the CPI back to positive
territory.
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Table 16: Model with external I/O links: Effects on the US Economy from US Tariffs on
Chinese Imports

(1) (2) (3)
Model (with input-output linkages) Neoclassical CRS Scale + Scope Scale + Scope
Import tariffs on Chinese imports 20% Uniform 20% Uniform Alternative

Change (%)
Consumer Price Index (CPI) 1.69 0.11 -2.68
Producer Price Index (PPI) 0.58 -2.12 -6.10

Imports from China -38.7 -40.8 -40.8
Imports from Rest of World 8.9 4.6 -4.2
US Output 0.6 7.4 20.2
US Exports 2.6 7.5 26.0
Manufacturing Trade Deficit -3.0 -32.5 -86.3

As Share of Manufacturing Output (%)
NewManufacturing Profits 0 0.28 0.72
New Tariff Revenues 0.89 0.86 0.15

Notes: This table extends the results in Table 6 to an environment with external input-output linkages. It presents
estimates of the impact of two different sets of tariffs on outcomes in the US economy, under two different model
settings calibrated to match US national industry-level aggregates (industry output and trade patterns) in 2017.
Column (1) presents results from a 20% increase in tariffs on Chinese imports across all industries, under a
neoclassical model with constant returns to scale and perfect competition. Column (2) compares the impact of the
same set of tariffs to my model with economies of scale and scope. Column (3) presents results from alternative
tariffs predicted by my model that seek to minimize the CPI impact while achieving the same reduction in total
imports from China. See Definition 1 for a characterization of the open economy equilibrium and Appendix
Section C.8.3 for details on how I compute alternative tariffs.
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